
KangarooTwelve

draft-viguier-kangarootwelve-01

Benôıt Viguier1

CFRG Meeting, March 19, 2018

1Radboud University, Nijmegen, The Netherlands

1 / 13



What is KangarooTwelve?

absorbing squeezing

m0

c

r

outer

inner

f

m1

f

m2

f

1111

f

z0

f

z0

f

z1

I SHAKE128

• eXtendable Output Function

• Sponge construction

• Uses Keccak-p[1600, nr = 24]

• BUT no parallelism

2 / 13



What is KangarooTwelve?

S0 0300* CV CV CV … CV CV n-1 FFFF 06

S1

0B

S2

0B

S3

0B

Sn-2

0B

Sn-1

0B

I KangarooTwelve

• eXtendable Output Function

• Tree on top of sponge construction

• Keccak-p reduced from 24 to 12 rounds

• Parallelism grows automatically with input size

• No penalty for short messages

3 / 13



How secure is KangarooTwelve?

I Same security claim as SHAKE128: 128 bits of security

I Sponge generic security

[EuroCrypt 2008] – On the Indifferentiability of the Sponge Construction

I Parallel mode with proven generic security

[IJIS 2014] – Sufficient conditions for sound tree and sequential hashing modes

[ACNS 2014] – Sakura: A Flexible Coding for Tree Hashing

I Sponge function on top of Keccak-p[1600, nr = 12]

• Round function unchanged

⇒ cryptanalysis since 2008 still valid

• Safety margin: from rock-solid to comfortable

4 / 13



Status of Keccak cryptanalysis

I Collision attacks up to 5 rounds

• Also up to 6 rounds, but for non-standard

parameters (c = 160)

[Song, Liao, Guo, CRYPTO 2017]

I Stream prediction

• in 8 rounds (2128 time, prob. 1)

• in 9 rounds (2256 time, prob. 1)

[Dinur, Morawiecki, Pieprzyk, Srebrny, Straus,

EUROCRYPT 2015]

I Lots of third party cryptanalysis available at:

https://keccak.team/third_party.html

5 / 13

https://keccak.team/third_party.html


How fast is KangarooTwelve?

I At least twice as fast as SHAKE128 on short inputs

I Much faster when parallelism is exploited on long inputs

Short input Long input

Intel R© CoreTM i5-4570 (Haswell) 3.68 c/b 1.44 c/b

Intel R© CoreTM i5-6500 (Skylake) 2.89 c/b 1.22 c/b

Intel R© CoreTM i7-7800X (Skylake-X) 2.35 c/b 0.55 c/b
Single core only.

6 / 13



Why is it interesting for the IETF?

I Keccak/KangarooTwelve is an open design

• Public design rationale

• Result of an open international competition

• Long-standing active scrutiny from the crypto community

I Best security/speed trade-off

• Speed-up w/o wasting cryptanalysis resources (no tweaks)

• Proven generic security

I Scalable parallelism

• As much parallelism as the implementation can exploit

• Without parameter

7 / 13



https://tools.ietf.org/html/

draft-viguier-kangarootwelve-01

7 / 13

https://tools.ietf.org/html/draft-viguier-kangarootwelve-01
https://tools.ietf.org/html/draft-viguier-kangarootwelve-01


Analyzing the sponge construction

8 / 13



Analyzing the sponge construction

8 / 13



Generic security of the sponge construction

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Theorem, explained

Pr[attack] ≤ N2

2c+1
(or so)

⇒ if N � 2c/2, then the probability is negligible

9 / 13

http://sponge.noekeon.org/SpongeIndifferentiability.pdf


Generic security of the sponge construction

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Theorem, explained

Pr[attack] ≤ N2

2c+1
(or so)

⇒ if N � 2c/2, then the probability is negligible

9 / 13

http://sponge.noekeon.org/SpongeIndifferentiability.pdf


Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

10 / 13



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

10 / 13



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

10 / 13



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

10 / 13



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

10 / 13



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ third-party cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

10 / 13



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ lots of third-party cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

10 / 13



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ lots of third-party cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

10 / 13



Impact of parallelism

Keccak-f [1600]× 1 1070 cycles

Keccak-f [1600]× 2 1360 cycles

Keccak-f [1600]× 4 1410 cycles

CPU: Intel R© CoreTM i5-6500 (Skylake) with AVX2 256-bit SIMD

11 / 13



Tree hashing

Example: ParallelHash [SP 800-185]

function instruction set cycles/byte 1

Keccak[c = 256]× 1 x86 64 6.29

Keccak[c = 256]× 2 AVX2 4.32

Keccak[c = 256]× 4 AVX2 2.31

CPU: Intel R© CoreTM i5-6500 (Skylake) with AVX2 256-bit SIMD

1for long messages.
12 / 13



KangarooTwelve’s mode

S0 0300* CV CV CV … CV CV n-1 FFFF 06

S1

0B

S2

0B

S3

0B

Sn-2

0B

Sn-1

0B

Final node growing with kangaroo hopping and Sakura coding

[ACNS 2014]

13 / 13


