

KANGAROOTWELVE draft-viguier-kangarootwelve-01

Benoît Viguier¹

CFRG Meeting, March 19, 2018

¹Radboud University, Nijmegen, The Netherlands

What is KANGAROOTWELVE?

SHAKE128

- eXtendable Output Function
- Sponge construction
- Uses Keccak- $p[1600, n_{\rm r} = 24]$
- BUT no parallelism

What is KANGAROOTWELVE?

- KangarooTwelve
 - eXtendable Output Function
 - Tree on top of sponge construction
 - KECCAK-*p* reduced from 24 to 12 rounds
 - Parallelism grows automatically with input size
 - No penalty for short messages

How secure is KANGAROOTWELVE?

- ▶ Same security claim as SHAKE128: 128 bits of security
- Sponge generic security

 $\left[{{\sf EuroCrypt}~2008} \right]$ – On the Indifferentiability of the Sponge Construction

Parallel mode with proven generic security

[IJIS 2014] – Sufficient conditions for sound tree and sequential hashing modes [ACNS 2014] – Sakura: A Flexible Coding for Tree Hashing

- ▶ Sponge function on top of Keccak- $p[1600, n_r = 12]$
 - Round function unchanged

 \Rightarrow cryptanalysis since 2008 still valid

• Safety margin: from *rock-solid* to *comfortable*

Status of KECCAK cryptanalysis

- Collision attacks up to 5 rounds
 - Also up to 6 rounds, but for non-standard parameters (c = 160)

[Song, Liao, Guo, CRYPTO 2017]

Stream prediction

- in 8 rounds (2¹²⁸ time, prob. 1)
- in 9 rounds (2²⁵⁶ time, prob. 1)

[Dinur, Morawiecki, Pieprzyk, Srebrny, Straus, EUROCRYPT 2015]

• Lots of third party cryptanalysis available at:

https://keccak.team/third_party.html

How fast is KANGAROOTWELVE?

- ▶ At least twice as fast as SHAKE128 on short inputs
- Much faster when parallelism is exploited on long inputs

	Short input	Long input	
Intel Core TM i5-4570 (Haswell)	3.68 c/b	1.44 c/b	
Intel® Core [™] i5-6500 (Skylake)	2.89 c/b	1.22 c/b	
Intel [®] Core TM i7-7800X (Skylake-X)	2.35 c/b	0.55 c/b	
Single core only			

Why is it interesting for the IETF?

► KECCAK/KANGAROOTWELVE is an open design

- Public design rationale
- Result of an open international competition
- Long-standing active scrutiny from the crypto community
- Best security/speed trade-off
 - Speed-up w/o wasting cryptanalysis resources (no tweaks)
 - Proven generic security
- Scalable parallelism
 - As much parallelism as the implementation can exploit
 - Without parameter

https://tools.ietf.org/html/ draft-viguier-kangarootwelve-01

Analyzing the sponge construction

Analyzing the sponge construction

Generic security of the sponge construction

Theorem 2. A padded sponge construction calling a random permutation, $S'[\mathcal{F}]$, is (t_D, t_S, N, ϵ) -indistinguishable from a random oracle, for any t_D , $t_S = O(N^2)$, $N < 2^c$ and and for any ϵ with $\epsilon > f_P(N)$.

If N is significantly smaller than 2^c , $f_P(N)$ can be approximated closely by:

$$f_P(N) \approx 1 - e^{-\frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}} < \frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}.$$
 (6)

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Generic security of the sponge construction

Theorem 2. A padded sponge construction calling a random permutation, $S'[\mathcal{F}]$, is (t_D, t_S, N, ϵ) -indistinguishable from a random oracle, for any t_D , $t_S = O(N^2)$, $N < 2^c$ and and for any ϵ with $\epsilon > f_P(N)$.

If N is significantly smaller than 2^c , $f_P(N)$ can be approximated closely by:

$$f_P(N) \approx 1 - e^{-\frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}} < \frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}.$$
 (6)

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Theorem, explained

$$\Pr[\mathsf{attack}] \le \frac{N^2}{2^{c+1}} \text{ (or so)}$$

 \Rightarrow if $N \ll 2^{c/2}$, then the probability is negligible

Two pillars of security in cryptography

► Generic security

• Strong mathematical proofs

Two pillars of security in cryptography

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale
 - \Rightarrow cryptanalysis!

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale
 - \Rightarrow third-party **cryptanalysis!**

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale
 - \Rightarrow lots of third-party **cryptanalysis!**

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale
 - ⇒ lots of third-party cryptanalysis!
 - Confidence
 - \Leftarrow sustained cryptanalysis activity and no break
 - \Leftarrow proven properties

KECCAK- $f[1600] \times 1$ 1070 cycles KECCAK- $f[1600] \times 2$ 1360 cycles KECCAK- $f[1600] \times 4$ 1410 cycles

CPU: Intel $\ensuremath{\mathbb{R}}$ Core $\ensuremath{^{\mathsf{TM}}}$ i5-6500 (Skylake) with AVX2 256-bit SIMD

Tree hashing

Example: ParallelHash [SP 800-185]

function	instruction set	cycles/byte ¹
$Keccak[c=256]\times 1$	×86_64	6.29
$Keccak[c=256]\times 2$	AVX2	4.32
$Keccak[c=256]\times 4$	AVX2	2.31

CPU: Intel $\ensuremath{\mathbb{R}}$ Core $\ensuremath{^{\mathsf{TM}}}$ i5-6500 (Skylake) with AVX2 256-bit SIMD

¹for long messages.

KANGAROOTWELVE's mode

Final node growing with kangaroo hopping and SAKURA coding [ACNS 2014]