

KANGAROOTWELVE draft-viguier-kangarootwelve-00

Benoît Viguier¹

CFRG Meeting, July 18, 2017

¹Radboud University, Nijmegen, The Netherlands

What is KANGAROOTWELVE?

An extendable output function (XOF) like SHAKE128, with:

- ▶ an "embarassingly" parallel mode on top
 - Parallelism grows automatically with input size
 - No penalty for short messages
- ▶ a smaller number of rounds
 - Reduced from 24 to 12

General hash function, parallel mode transparent for the user

- Parallel mode with proven generic security [EuroCrypt 2008] [IJIS 2014] [ACNS 2014]
- Sponge function on top of KECCAK- $p[1600, n_r = 12]$
 - Same round function as KECCAK/SHA-3 ⇒ cryptanalysis since 2008 still valid
 - Safety margin: from rock-solid to comfortable

Status of KECCAK

- Collision attacks up to 5 rounds
 - Also up to 6 rounds, but for non-standard parameters (c = 160)

[Song, Liao, Guo, CRYPTO 2017]

 Stream prediction in 8 rounds (2¹²⁸ time, prob. 1)
[Dinur, Morawiecki, Pieprzyk, Srebrny, Straus, EUROCRYPT 2015]

Round function unchanged since 2008

http://keccak.noekeon.org/third_party.html

How fast is KANGAROOTWELVE?

- ► At least twice as fast as SHAKE128 on short inputs
- Much faster when parallelism is exploited on long inputs

	Short input	Long input	
Intel Core i5-4570 (Haswell)	4.15 c/b	1.44 c/b	
Intel Core i5-6500 (Skylake)	3.72 c/b	1.22 c/b	
Intel Xeon Phi 7250 (Knights Landing)*	(4.56 c/b)	0.74 c/b	
* Thanks to Romain Dolbeau			

Why is it interesting for the IETF?

► KECCAK/KANGAROOTWELVE is an open design

- Public design rationale
- Result of an open international competition
- Long-standing active scrutiny from the crypto community
- Best security/speed trade-off
 - Speed-up without wasting cryptanalysis resources (no tweaks)
- Scalable parallelism
 - As much parallelism as the implementation can exploit
 - With one parameter set

Backup slides

Analyzing the sponge construction

Analyzing the sponge construction

Generic security of the sponge construction

Theorem 2. A padded sponge construction calling a random permutation, $S'[\mathcal{F}]$, is (t_D, t_S, N, ϵ) -indistinguishable from a random oracle, for any t_D , $t_S = O(N^2)$, $N < 2^c$ and and for any ϵ with $\epsilon > f_P(N)$.

If N is significantly smaller than 2^c , $f_P(N)$ can be approximated closely by:

$$f_P(N) \approx 1 - e^{-\frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}} < \frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}.$$
 (6)

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Generic security of the sponge construction

Theorem 2. A padded sponge construction calling a random permutation, $S'[\mathcal{F}]$, is (t_D, t_S, N, ϵ) -indistinguishable from a random oracle, for any t_D , $t_S = O(N^2)$, $N < 2^c$ and and for any ϵ with $\epsilon > f_P(N)$.

If N is significantly smaller than 2^c , $f_P(N)$ can be approximated closely by:

$$f_P(N) \approx 1 - e^{-\frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}} < \frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}.$$
 (6)

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Theorem, explained

$$\Pr[\text{attack}] \le \frac{N^2}{2^{c+1}} \text{ (or so)}$$

 \Rightarrow if $N \ll 2^{c/2}$, then the probability is negligible

Generic security

• Strong mathematical proofs

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale
 - \Rightarrow cryptanalysis!

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale
 - ⇒ third-party cryptanalysis!

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale
 - \Rightarrow lots of third-party **cryptanalysis!**

- Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - \Rightarrow open design rationale
 - \Rightarrow lots of third-party **cryptanalysis!**
 - Confidence
 - \Leftarrow sustained cryptanalysis activity and no break
 - \Leftarrow proven properties

$\begin{array}{ll} \mathsf{Keccak}{-}f[1600] \times 1 & 1070 \text{ cycles} \\ \mathsf{Keccak}{-}f[1600] \times 2 & 1360 \text{ cycles} \\ \mathsf{Keccak}{-}f[1600] \times 4 & 1410 \text{ cycles} \end{array}$

CPU: Intel Core i5-6500 (Skylake) with AVX2 256-bit SIMD

Tree hashing

Example: ParallelHash [SP 800-185]

function	instruction set	cycles/byte ¹
Keccak[c=256] imes 1	×86_64	6.29
$Keccak[c=256]\times 2$	AVX2	4.32
Keccak[c=256] imes 4	AVX2	2.31

CPU: Intel Core i5-6500 (Skylake) with AVX2 256-bit SIMD

¹for long messages

KANGAROOTWELVE's mode

Final node growing with kangaroo hopping and SAKURA coding [ACNS 2014]