
KangarooTwelve

draft-viguier-kangarootwelve-00

Benôıt Viguier1

CFRG Meeting, July 18, 2017

1Radboud University, Nijmegen, The Netherlands

1 / 12



What is KangarooTwelve?

An extendable output function (XOF) like SHAKE128, with:

I an “embarassingly” parallel mode on top

• Parallelism grows automatically with input size

• No penalty for short messages

I a smaller number of rounds

• Reduced from 24 to 12

General hash function, parallel mode transparent for the user
2 / 12



How secure is KangarooTwelve?

I Parallel mode with proven generic security

[EuroCrypt 2008] [IJIS 2014] [ACNS 2014]

I Sponge function on top of Keccak-p[1600, nr = 12]

• Same round function as Keccak/SHA-3

⇒ cryptanalysis since 2008 still valid

• Safety margin: from rock-solid to comfortable

3 / 12



Status of Keccak

I Collision attacks up to 5 rounds

• Also up to 6 rounds, but for non-standard

parameters (c = 160)

[Song, Liao, Guo, CRYPTO 2017]

I Stream prediction in 8 rounds (2128 time, prob. 1)

[Dinur, Morawiecki, Pieprzyk, Srebrny, Straus,

EUROCRYPT 2015]

Round function unchanged since 2008

http://keccak.noekeon.org/third_party.html

4 / 12

http://keccak.noekeon.org/third_party.html


How fast is KangarooTwelve?

I At least twice as fast as SHAKE128 on short inputs

I Much faster when parallelism is exploited on long inputs

Short input Long input

Intel Core i5-4570 (Haswell) 4.15 c/b 1.44 c/b

Intel Core i5-6500 (Skylake) 3.72 c/b 1.22 c/b

Intel Xeon Phi 7250 (Knights Landing)∗ (4.56 c/b) 0.74 c/b
∗ Thanks to Romain Dolbeau

5 / 12



Why is it interesting for the IETF?

I Keccak/KangarooTwelve is an open design

• Public design rationale

• Result of an open international competition

• Long-standing active scrutiny from the crypto community

I Best security/speed trade-off

• Speed-up without wasting cryptanalysis resources (no

tweaks)

I Scalable parallelism

• As much parallelism as the implementation can exploit

• With one parameter set

6 / 12



Backup slides

6 / 12



Analyzing the sponge construction

7 / 12



Analyzing the sponge construction

7 / 12



Generic security of the sponge construction

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Theorem, explained

Pr[attack] ≤ N2

2c+1
(or so)

⇒ if N � 2c/2, then the probability is negligible

8 / 12

http://sponge.noekeon.org/SpongeIndifferentiability.pdf


Generic security of the sponge construction

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Theorem, explained

Pr[attack] ≤ N2

2c+1
(or so)

⇒ if N � 2c/2, then the probability is negligible

8 / 12

http://sponge.noekeon.org/SpongeIndifferentiability.pdf


Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

9 / 12



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

9 / 12



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

9 / 12



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

9 / 12



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

9 / 12



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ third-party cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

9 / 12



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ lots of third-party cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

9 / 12



Two pillars of security in cryptography

I Generic security

• Strong mathematical proofs

⇒ scope of cryptanalysis reduced to primitive

I Security of the primitive

• No proof!

⇒ open design rationale

⇒ lots of third-party cryptanalysis!

• Confidence

⇐ sustained cryptanalysis activity and no break

⇐ proven properties

9 / 12



Impact of parallelism

Keccak-f [1600]× 1 1070 cycles

Keccak-f [1600]× 2 1360 cycles

Keccak-f [1600]× 4 1410 cycles

CPU: Intel Core i5-6500 (Skylake) with AVX2 256-bit SIMD

10 / 12



Tree hashing

Example: ParallelHash [SP 800-185]

function instruction set cycles/byte 1

Keccak[c = 256]× 1 x86 64 6.29

Keccak[c = 256]× 2 AVX2 4.32

Keccak[c = 256]× 4 AVX2 2.31

CPU: Intel Core i5-6500 (Skylake) with AVX2 256-bit SIMD

1for long messages
11 / 12



KangarooTwelve’s mode

Final node growing with kangaroo hopping and Sakura coding

[ACNS 2014]

12 / 12


