

Linear Cryptanalysis of MORUS

Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen, Gaëtan Leurent, Brice Minaud, Yann Rotella, Yu Sasaki, Benoît Viguier

Asiacrypt, December 4, 2018

Yanbin Li and Meiqin Wang. "Cryptanalysis of MORUS". Designs, Codes and Cryptography, pages 1—24, First Online: 09 June 2018

Our paper was submitted to ePrint on 17 May 2018.

MILP-aided search for reduced MORUS.

- ▶ Integral distinguishers for 6.5 steps of MORUS-640.
- ▶ Differential distinguishers for 4.5 steps of MORUS-1280.

MORUS design

► 🚳 Analysis of MINIMORUS

► 📦 Application to MORUS

▶ Family of authenticated ciphers by Wu and Huang

• MORUS-640 with 128-bit key

- MORUS-1280-128 with 128-bit key
- MORUS-1280-256 with 256-bit key

 S_0 S_1 S_2 S_3 S_4

 $5 \times 4 \times 32$ -bit words

 $5\times4\times64\text{-bit}$ words

 \blacktriangleright Security claim for confidentiality = key size; re-key every 2⁶⁴ blocks

► CAESAR finalist for Use-Case 2 (High Performance)

MORUS Authenticated Cipher (simplified)

Initialization: a $S_0 = N$, $S_1 = K$ b $16 \times \text{StateUpdate}(0)$ C $S_1 = S_1 \oplus K$ 2 Encryption: For each msg block M_i : a $C_i = M_i \oplus \intercal(S_0, \ldots, S_3)$ **b** STATEUPDATE $\mathcal{C}(M_i)$ 3 Finalization: a $S_4 = S_4 \oplus S_0$ b $10 \times \text{STATEUPDATE} \mathcal{C}(\text{len}(M))$ \subset $T = \Upsilon(S_0, \ldots, S_3)$

MORUS Authenticated Cipher (simplified)

2 Encryption: For each msg block M_i : a $C_i = M_i \oplus \intercal(S_0, \ldots, S_3)$ b STATEUPDATE $\mathcal{C}(M_i)$

MORUS STATEUPDATE Function

- ▶ Nonlinearity: "Toffoli" gate $z = z \oplus (x \odot y)$
- ▶ Diffusion:

Xors $z = z \oplus x$

Rotation within words $\boxed{\ll r}$

Rotate words <u>wrw</u>

MINIMORUS STATEUPDATE Function

 $\begin{aligned} \mathbf{x} &= \mathbf{u} \oplus \mathbf{y} \oplus (\mathbf{z} \wedge \mathbf{t}) \\ \text{Can be linear approximated with} \\ \text{E: } \mathbf{x} &= \mathbf{u} \oplus \mathbf{y} \quad \text{and} \quad \Pr(E) = \frac{3}{4} \end{aligned}$

The *bias* ε is:

$$\Pr(E) = \frac{1}{2} + \varepsilon \implies \varepsilon = \frac{1}{4}$$

The correlation and weight of an approximation is:

$$\operatorname{cor}(E) := 2\varepsilon$$

weight $(E) := -\log_2 |\operatorname{cor}(E)| \implies \operatorname{weight}(E) = 1$

Pilling Up Lemma (Matsui M., 1993)

The correlation (resp. weight) of an XOR of independent variables is equal to the product (resp. sum) of their individual correlations (resp. weights)

MINIMORUS: Approximation fragments $\alpha, \beta, \gamma, \delta, \varepsilon$

MINIMORUS: Approximation fragments $\alpha, \beta, \gamma, \delta, \varepsilon$

MINIMORUS: Approximation fragments $\alpha, \beta, \gamma, \delta, \varepsilon$

Building Trails

 S_0 S_1 S_2 S_3 S_4 С 0 0 Bo

 $11 \, / \, 16$

 $11 \, / \, 16$

 $11 \, / \, 16$

11/16

MINIMORUS: Weight of $\beta_i^t \oplus \gamma_i^t$

Weight of $\beta_i^t \oplus \gamma_i^t$ is 0 (not 2).

MINIMORUS-640: Weight corrected

13/16

MINIMORUS: Final Approximation

- $\blacktriangleright \text{ MINIMORUS-1280} \\ C_{51}^0 \oplus C_0^1 \oplus C_{25}^1 \oplus C_{33}^1 \oplus C_{55}^1 \oplus C_4^2 \oplus C_7^2 \oplus C_{29}^2 \oplus C_{37}^2 \oplus C_{38}^2 \oplus C_{46}^2 \oplus C_{51}^2 \oplus C_{11}^3 \oplus C_{20}^3 \oplus C_{42}^3 \oplus C_{50}^3 \oplus C_{24}^4 \to 0$

- ▶ Total weight of χ : 7 + 9 = 16.
- ▶ Experimentally verified
 - Analysis of the Algebraic Normal Form
 - Measurements on random inputs (slightly better than expected)

$\square = \square + \square + \square + \square$ S_{i,j} in MINIMORUS = S_{i,j} \oplus S_{i,j+w} \oplus S_{i,j+2w} \oplus S_{i,j+3w} in MORUS

Weight ×4, except $\beta_i + \gamma_i$ has weight 0 in MINIMORUS but 3 in MORUS

MORUS-640: Weight $4 \times 16 + 3 \times 3 = 73 \rightarrow \text{data complexity} \approx 2^{146}$ MORUS-1280: Weight $4 \times 16 + 4 \times 3 = 76 \rightarrow \text{data complexity} \approx 2^{152}$

trail is immune to bit-shift: actual data complexity is about a factor of 2⁵ to 2⁶ lower

$\blacktriangleright \Box = \Box + \Box + \Box + \Box$

 $S_{i,j}$ in MINIMORUS = $S_{i,j} \oplus S_{i,j+w} \oplus S_{i,j+2w} \oplus S_{i,j+3w}$ in MORUS

▶ Weight ×4, except $\beta_i + \gamma_i$ has weight 0 in MINIMORUS but 3 in MORUS

ORUS-640: Weight 4 × 16 + 3 × 3 = 73 → data complexity ≈ 2¹⁴⁶
MORUS-1280: Weight 4 × 16 + 4 × 3 = 76 → data complexity ≈ 2¹⁵²

 \blacktriangleright trail is immune to bit-shift: actual data complexity is about a factor of 2⁵ to 2⁶ lower

 (\mathfrak{A})

 \odot

► Keystream correlation

- The bias is *independent* of Key or Nounce!
- Known plaintext \implies Distinguisher.
- Multiple fixed plaintext \implies plaintext recovery.
- Similar to RC4, BEAST attack...

Data complexity

- Data limit 2⁶⁴... but correlation holds under rekeying.
- Require 2¹⁴¹ blocks for MORUS-640
- Require 2¹⁴⁶ blocks for MORUS-1280 (violate 256-bit confidentiality claim)
- Not practical ;-)

► Keystream correlation

- The bias is *independent* of Key or Nounce!
- Known plaintext \implies Distinguisher.
- Multiple fixed plaintext \implies plaintext recovery.
- Similar to RC4, BEAST attack...

► Data complexity

- Data limit 2⁶⁴... but correlation holds under rekeying.
- Require 2¹⁴¹ blocks for MORUS-640
- Require 2¹⁴⁶ blocks for MORUS-1280 (violate 256-bit confidentiality claim)
- Not practical ;-)

https://eprint.iacr.org/2018/464.pdf