
Advance Use of Git

Benôıt Viguier

DS-Lunch Talk,

Nijmegen, October 25th, 2019

1

Disclaimer

If you don’t line command line interface,
this talk is not for you.

2

Minimal Git Commands

I git clone git@gitlab.science.ru.nl:user/repo

I git status

I git add <directory/files>

I git commit

I git push

I git pull

3

Git Status

I git status

I git log

4

Shortcuts

I git add --all (-A)

Add all the updated/untracked files.

I git add --update (-u)

Add all the updated files but do not add the untracked ones.

I git add --patch (-p)

Similar to update. Interactively let you decide which modifications in each

file you want to save.

I git commit -m "commit message"

5

branches

Branches

I Develop features without breaking master.

=⇒ the master branch always compiles! X

I Develop multiple features at the same time.

6

Branches

7

Branches

I Create a branch git branch Future-plans

I Switch to that branch git checkout Future-plans

These two can be done in one step: git checkout -b Future-plans

8

Branches

Work (modify, commits. . .) on the Future-plans.

In the mean time, the Master branch continue forward (other commits. . .)

9

Branches

If nothing was done on Master while you were working on Future-plans you

can directly merge. This is called fast-forward.

(1) Switch to the master branch: git checkout master

(2) Merge: git merge Future-plans

10

Branches

If nothing was done on Master while you were working on Future-plans you

can directly merge. This is called fast-forward.

(1) Switch to the master branch: git checkout master

(2) Merge: git merge Future-plans

11

Branches

To push/update a branch on the online repository:

git push origin Future-plans

To delete (-d) a branch on the online repository:

git push -d origin Future-plans

To delete (-D) locally a branch:

git branch -D <branch-name>

(Not possible while you are on that branch.)

12

Merging

Merging

Master has changed while you were working on Future-plans the merge

process is slightly different.

(1) Switch to the master branch: git checkout master

(2) Merge: git merge Future-plans

(3) Edit the commit message in your editor, save and close.

13

Merging

Master has changed while you were working on Future-plans the merge

process is slightly different.

(1) Switch to the master branch: git checkout master

(2) Merge: git merge Future-plans

(3) Edit the commit message in your editor, save and close.

14

Rebasing

Merging & Rebasing

Master has changed while you were working on Feature.

You want to make sure your modification do not break Master.

15

Merging

Solution 1:

(1) Switch to the Feature branch: git checkout Feature

(2) Merge: git merge Master

16

Rebasing

Solution 2:

(1) Switch to the Feature branch: git checkout Feature

(2) Merge: git rebase Master

17

Force Pushing

Once you have rebased you have a conflict between your local tree and the

remote tree.

What the remote repository knows: What you have:

18

Force Pushing

Once you have rebased you have a conflict between your local tree and the

remote tree.

What the remote repository knows: What you have:

The solution is a force push:

git push --force origin Feature

19

Force Pushing

Force pushing is very dangerous and will break everything if not used

correctly.

I NEVER force push on Master.

I ALWAYS specify the repo and the branch.

20

Conflicts

Conflicts

Conflicts can happen when you do a pull, merge or rebase.

git merge new_branch_to_merge_later

Auto -merging merge.txt

CONFLICT (content): Merge conflict in merge.txt

Automatic merge failed; fix conflicts and then commit the result.

21

Conflicts

git status

On branch master

You have unmerged paths.

(fix conflicts and run "git commit ")

(use "git merge --abort" to abort the merge)

Unmerged paths:

(use "git add <file >..." to mark resolution)

both modified: merge.txt

22

Conflicts

cat merge.txt

...

<<<<<<< HEAD

this is some content to mess with

content to append

=======

totally different content to merge later

>>>>>>> new_branch_to_merge_later

...

23

Conflicts

Resolution steps:

(1) Edit the file: select the part you like, erase the alternative, save.

(2) git add merge.txt

(3) git commit -m "Merged and resolved conflict"

In the case of a rebase , instead of writting a commit message, just do

git rebase --continue .

In both case, if you are not sure, you can use the --abort option.

24

HEAD, Checking out, Reverting &

Resetting

HEAD & checkout

The pointer of the current location in Git is called the HEAD. It can be used

as a reference point.

E.g. if you want to go back to a previous commit, you can do either:

I git checkout HEAD~2

I git checkout b where b is a commit id

25

HEAD & checkout

The pointer of the current location in Git is called the HEAD. It can be used

as a reference point.

E.g. if you want to go back to a previous commit, you can do either:

I git checkout HEAD~2

I git checkout b where b is a commit id

From there you can start working on a new branch: git checkout -b Foo

26

Changing the commit message

You can rewrite the message of the last commit with:

git commit --amend

27

Changing the commit message

You can rewrite the message of the last commit with:

git commit --amend

27

Reverting

If you want to undo the last commit: git revert HEAD

This will create a new commit which reverts the last changes.

If you want to undo the change of an older commit you can also do:

git revert commit_id e.g. git revert a1e8bf5 or

git revert HEAD~1

28

Resetting

git reset --... commit_id comes with 2 main options:

I --soft : keep the files as is but reset the pointer to commit_id .

I --hard : reset the files to the pointer commit_id .

29

Reset tricks

I git reset --hard HEAD : remove all the change made from the HEAD

I git reset --soft HEAD~4 : go back and forget 4 commits but leave

the files as is. Usefull if you want to squash your history.

I git reset --hard commit_id : set the repository as it was in

commit_id

30

Stage, Diff, Stash, Clean

Staged files and diff

Files have 4 states:

I Commited

I Staged

I Unstaged

I Untracked

Staged files are contains changes that are reccorded by Git but not commited

yet.

git diff will show the diff between staged/commited and unstaged files.

31

Stash

git stash comes with 4 main option:

I push : (optional) save your local modifications and revert to HEAD.

I pop : apply the modifications it on top of the current working tree state.

I list

I clear

During a git stash ; git stash pop , the all moficiations are unstaged.

32

Clean

You modified a lot of files, you have a lot of untracked files, your repository is

dirty? Don’t worry, git clean is here for you!

I git clean -nd : list the files to be removed

I git clean -fd : remove recursively (-d) untracked files

I git clean -fxd : remove recursively untracked and ignored (-x) files

By default git clean will do nothing, it requires either:

I -n for a dry-run.

I -f for force

33

Workflow: All on Master

(classic academia)

All on Master

John works on his feature

34

All on Master

Mary works on her feature

34

All on Master

John publishes his feature

git push origin master

34

All on Master

Mary tries to publish her feature

git push origin master

error: failed to push some refs to ’/path/to/repo.git ’

hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. Merge the remote changes (e.g. ’git pull ’)

hint: before pushing again.

34

All on Master

Mary rebases on top of John’s commit(s)

git pull --rebase origin master

34

All on Master

Expected new tree (Mary POV).

34

All on Master

But there is a conflict...

CONFLICT (content): Merge conflict in <some -file >

34

All on Master

git status

Unmerged paths:

(use "git reset HEAD <some -file >..." to unstage)

(use "git add/rm <some -file >..." as appropriate to mark resolution)

#

both modified: <some -file >

34

All on Master

Mary edits <some-file>

git add <some -file >

git rebase --continue

34

All on Master

Mary successfully publishes her feature

git push origin master

34

Workflow: Branch Workflow

Using Branches and Pull Requests

Mary begins a new feature

git checkout -b marys-feature master

git status

git add <some-file>

git commit

35

Using Branches and Pull Requests

Mary goes to lunch

git push -u origin marys-feature

35

Using Branches and Pull Requests

Mary finishes her feature

git push

35

Using Branches and Pull Requests

Bill receives the Pull Request, review and [ask for some

change/comment/approve]

35

Using Branches and Pull Requests

Mary makes the changes

35

Using Branches and Pull Requests

Mary publishes her feature

git checkout master

git pull

git merge marys-feature

git push

35

Gitflow Workflow

Gitflow Workflow

Develop and Master Branches.

I Master branch only contains the minor and major versions.

=⇒ e.g. Debian Stable

I Develop branch contains all the intermediate moditications.

=⇒ e.g. Debian Unstable

36

Gitflow Workflow

I Features are developped as branches of the Develop branch.

=⇒ e.g. Debian Experimental

36

Gitflow Workflow

I A Release branch contains the ”frozen” features.

=⇒ e.g. Debian Testing

36

Gitflow Workflow

I if an issue in master is detected a hotfix branch is created from master

36

Bonus

bonus

In your \.bashrc or \.zshrc:

alias gtree=’git log --oneline --decorate --all --graph’

37

Thank you.

37

	branches
	Merging
	Rebasing
	Conflicts
	HEAD, Checking out, Reverting & Resetting
	Stage, Diff, Stash, Clean
	Workflow: All on Master (classic academia)
	Workflow: Branch Workflow
	Gitflow Workflow
	Bonus

