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Disclaimer

If you don’t line command line interface,
this talk is not for you.
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Minimal Git Commands

I git clone git@gitlab.science.ru.nl:user/repo

I git status

I git add <directory/files>

I git commit

I git push

I git pull
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Git Status

I git status

I git log

4



Shortcuts

I git add --all ( -A )

Add all the updated/untracked files.

I git add --update ( -u )

Add all the updated files but do not add the untracked ones.

I git add --patch ( -p )

Similar to update. Interactively let you decide which modifications in each

file you want to save.

I git commit -m "commit message"
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branches



Branches

I Develop features without breaking master.

=⇒ the master branch always compiles! X

I Develop multiple features at the same time.
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Branches
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Branches

I Create a branch git branch Future-plans

I Switch to that branch git checkout Future-plans

These two can be done in one step: git checkout -b Future-plans
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Branches

Work (modify, commits. . . ) on the Future-plans.

In the mean time, the Master branch continue forward (other commits. . . )

9



Branches

If nothing was done on Master while you were working on Future-plans you

can directly merge. This is called fast-forward.

(1) Switch to the master branch: git checkout master

(2) Merge: git merge Future-plans
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Branches

If nothing was done on Master while you were working on Future-plans you

can directly merge. This is called fast-forward.

(1) Switch to the master branch: git checkout master

(2) Merge: git merge Future-plans
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Branches

To push/update a branch on the online repository:

git push origin Future-plans

To delete ( -d ) a branch on the online repository:

git push -d origin Future-plans

To delete ( -D ) locally a branch:

git branch -D <branch-name>

(Not possible while you are on that branch.)
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Merging



Merging

Master has changed while you were working on Future-plans the merge

process is slightly different.

(1) Switch to the master branch: git checkout master

(2) Merge: git merge Future-plans

(3) Edit the commit message in your editor, save and close.
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Merging

Master has changed while you were working on Future-plans the merge

process is slightly different.

(1) Switch to the master branch: git checkout master

(2) Merge: git merge Future-plans

(3) Edit the commit message in your editor, save and close.
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Rebasing



Merging & Rebasing

Master has changed while you were working on Feature.

You want to make sure your modification do not break Master.
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Merging

Solution 1:

(1) Switch to the Feature branch: git checkout Feature

(2) Merge: git merge Master
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Rebasing

Solution 2:

(1) Switch to the Feature branch: git checkout Feature

(2) Merge: git rebase Master
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Force Pushing

Once you have rebased you have a conflict between your local tree and the

remote tree.

What the remote repository knows: What you have:
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Force Pushing

Once you have rebased you have a conflict between your local tree and the

remote tree.

What the remote repository knows: What you have:

The solution is a force push:

git push --force origin Feature
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Force Pushing

Force pushing is very dangerous and will break everything if not used

correctly.

I NEVER force push on Master.

I ALWAYS specify the repo and the branch.
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Conflicts



Conflicts

Conflicts can happen when you do a pull, merge or rebase.

git merge new_branch_to_merge_later

Auto -merging merge.txt

CONFLICT (content): Merge conflict in merge.txt

Automatic merge failed; fix conflicts and then commit the result.
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Conflicts

git status

On branch master

You have unmerged paths.

(fix conflicts and run "git commit ")

(use "git merge --abort" to abort the merge)

Unmerged paths:

(use "git add <file >..." to mark resolution)

both modified: merge.txt
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Conflicts

cat merge.txt

...

<<<<<<< HEAD

this is some content to mess with

content to append

=======

totally different content to merge later

>>>>>>> new_branch_to_merge_later

...
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Conflicts

Resolution steps:

(1) Edit the file: select the part you like, erase the alternative, save.

(2) git add merge.txt

(3) git commit -m "Merged and resolved conflict"

In the case of a rebase , instead of writting a commit message, just do

git rebase --continue .

In both case, if you are not sure, you can use the --abort option.
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HEAD, Checking out, Reverting &

Resetting



HEAD & checkout

The pointer of the current location in Git is called the HEAD. It can be used

as a reference point.

E.g. if you want to go back to a previous commit, you can do either:

I git checkout HEAD~2

I git checkout b where b is a commit id
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HEAD & checkout

The pointer of the current location in Git is called the HEAD. It can be used

as a reference point.

E.g. if you want to go back to a previous commit, you can do either:

I git checkout HEAD~2

I git checkout b where b is a commit id

From there you can start working on a new branch: git checkout -b Foo
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Changing the commit message

You can rewrite the message of the last commit with:

git commit --amend
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Changing the commit message

You can rewrite the message of the last commit with:

git commit --amend
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Reverting

If you want to undo the last commit: git revert HEAD

This will create a new commit which reverts the last changes.

If you want to undo the change of an older commit you can also do:

git revert commit_id e.g. git revert a1e8bf5 or

git revert HEAD~1
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Resetting

git reset --... commit_id comes with 2 main options:

I --soft : keep the files as is but reset the pointer to commit_id .

I --hard : reset the files to the pointer commit_id .
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Reset tricks

I git reset --hard HEAD : remove all the change made from the HEAD

I git reset --soft HEAD~4 : go back and forget 4 commits but leave

the files as is. Usefull if you want to squash your history.

I git reset --hard commit_id : set the repository as it was in

commit_id
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Stage, Diff, Stash, Clean



Staged files and diff

Files have 4 states:

I Commited

I Staged

I Unstaged

I Untracked

Staged files are contains changes that are reccorded by Git but not commited

yet.

git diff will show the diff between staged/commited and unstaged files.
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Stash

git stash comes with 4 main option:

I push : (optional) save your local modifications and revert to HEAD.

I pop : apply the modifications it on top of the current working tree state.

I list

I clear

During a git stash ; git stash pop , the all moficiations are unstaged.
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Clean

You modified a lot of files, you have a lot of untracked files, your repository is

dirty? Don’t worry, git clean is here for you!

I git clean -nd : list the files to be removed

I git clean -fd : remove recursively ( -d ) untracked files

I git clean -fxd : remove recursively untracked and ignored ( -x ) files

By default git clean will do nothing, it requires either:

I -n for a dry-run.

I -f for force
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Workflow: All on Master

(classic academia)



All on Master

John works on his feature

34



All on Master

Mary works on her feature
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All on Master

John publishes his feature

git push origin master
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All on Master

Mary tries to publish her feature

git push origin master

error: failed to push some refs to ’/path/to/repo.git ’

hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. Merge the remote changes (e.g. ’git pull ’)

hint: before pushing again.
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All on Master

Mary rebases on top of John’s commit(s)

git pull --rebase origin master
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All on Master

Expected new tree (Mary POV).
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All on Master

But there is a conflict...

CONFLICT (content): Merge conflict in <some -file >
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All on Master

git status

# Unmerged paths:

# (use "git reset HEAD <some -file >..." to unstage)

# (use "git add/rm <some -file >..." as appropriate to mark resolution)

#

# both modified: <some -file >
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All on Master

Mary edits <some-file>

git add <some -file >

git rebase --continue
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All on Master

Mary successfully publishes her feature

git push origin master
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Workflow: Branch Workflow



Using Branches and Pull Requests

Mary begins a new feature

git checkout -b marys-feature master

git status

git add <some-file>

git commit
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Using Branches and Pull Requests

Mary goes to lunch

git push -u origin marys-feature
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Using Branches and Pull Requests

Mary finishes her feature

git push
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Using Branches and Pull Requests

Bill receives the Pull Request, review and [ask for some

change/comment/approve]

35



Using Branches and Pull Requests

Mary makes the changes
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Using Branches and Pull Requests

Mary publishes her feature

git checkout master

git pull

git merge marys-feature

git push
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Gitflow Workflow



Gitflow Workflow

Develop and Master Branches.

I Master branch only contains the minor and major versions.

=⇒ e.g. Debian Stable

I Develop branch contains all the intermediate moditications.

=⇒ e.g. Debian Unstable
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Gitflow Workflow

I Features are developped as branches of the Develop branch.

=⇒ e.g. Debian Experimental
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Gitflow Workflow

I A Release branch contains the ”frozen” features.

=⇒ e.g. Debian Testing
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Gitflow Workflow

I if an issue in master is detected a hotfix branch is created from master
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Bonus



bonus

In your \.bashrc or \.zshrc:

alias gtree=’git log --oneline --decorate --all --graph’
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Thank you.
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