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Introduction



Hashing vs Encryption
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Encryption
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Second pre-image attack

Hashing

I will pay 5 $.

I will pay 5000 $. 0xAB8924

=
0xAB8924

attack
Collision
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Keccak



Sponge construction

Sponge construction + invertible permutation f named Keccak-f [b].

Absorbing phase Squeezing phase

m0

c bits

r bits

f

m1

f

m2

f

m3

f

z0

f

z1

f

z2

Figure 1: A sponge construction

bit rate (r) + capacity (c) = width (b)

Keccak-f [1600]= (ι ◦ χ ◦ π ◦ ρ ◦ θ)24 and b = 1600
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State

x

y

z Slice
Column

Lane

Row

Figure 2: Keccak[200] state
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Keccak-f : θ

Linear mixing layer on column parity.

a

parity plane P
θ-effect

θ(a)

θ

E (x , z) =
P[x − 1, z ]⊕ P[x + 1, z − 1]

p[x , z ] :
⊕4

y=0 a[x , y , z ]
⊕

Figure 3: Application of θ to a state.

P is called the parity plane.
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Keccak-f : ρ and π

Bit-wise cyclic shift rotation on lanes.

Figure 4: The ρ transformation

Lane transposition.

Figure 5: The π transposition
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Keccak-f : χ

Non-linear mapping f algebraic degree of 2 which operates on rows.

not

and

xor

Figure 6: The χ transformation
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Differential Cryptanalysis



Differentials

t1
⊕

t′1 = ∆1

f f

t2
⊕

t′2 = ∆2

Figure 7: A differential (∆1
f

=⇒ ∆2)

Given an input difference ∆1, chances are that a difference ∆2 will occur. It can be

associated with a probability: P[(∆1 ⇒ ∆2)].
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Trails

t0
⊕

t′0 = ∆0

t1
⊕

t′1 = ∆1

t2
⊕

t′2 = ∆2

f f

f f

Figure 8: A trail (∆0
f

=⇒ ∆1
f

=⇒ ∆2)

Goal: Find a trail (∆0
f

=⇒ · · · f
=⇒ ∆n) such as ∆n = 0 (⇔ collision).
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There are 21600 − 1 input differences

possible for Keccak-f [1600].

Estimated number of hydrogen

atoms in the Universe: ≈ 2265
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Tree decomposition

Add empty Run

(Parity Kernel)

Add Run
Iterate on Run

Column Assignment Column Assignment

Iterate on Columns (Odd, Affected)

Add Run

Add Orbitals Iterate on Orbitals Add and Iterate Orbitals

Add Orbitals

Resulting states

Resulting states

Column Assignment

Figure 9: Tree decomposition of the search.
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From Code to Proofs

What are the verifications needed?

• orbitals (involution, order)

• colunms assignement (order)

• runs (order, z-canonicity factorization)

• and more. . .

What are the difficulties?

• C++ ⇒ no VST, no FRAMA-C, no Why3.

• Huge source code!

What have been done during this Internship?

• Using Hoare Logic.

• Orbitals: involution and order

The time I would have spent on more proofs would not have been compensated by

the gain of the correction.
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Tree decomposition

Add empty Run

(Parity Kernel)

Add Run
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Column Assignment Column Assignment

Iterate on Columns (Odd, Affected)
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Add Orbitals

Resulting states

Resulting states

Column Assignment

Figure 10: Tree decomposition of the search.
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Semantics of Trees and Iterators



Tree traversal: Tree definition

Section trees.
Variable (X : Type).

(* we do not want the too weak Coq generated
induction principles *)

Unset Elimination Schemes.

Inductive Tree : Type :=
node : X → list Tree → Tree.

Set Elimination Schemes.

Section Tree_ind.
Variable P : Tree → Prop.
Hypothesis HP : ∀ a ll,

(∀ x, In x ll → P x) →
P (node a ll).

Definition Tree_ind : ∀ t, P t.
End Tree_ind.

End trees.

Code 1: Tree definition

root

N1

N2N3

Figure 11: Tree

Induction principle:

1. prove the property for a tree with no children.

2. Assume that the property is True for all children, prove it for the parent.
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Tree traversal: Path definition

Definition Path := list nat.

Definition getNode (p:Path) (t:Tree X) : option (Tree X) := ...

Code 2: Path definition

Each node from the tree can be accessed by a

path specified as the list of the index of the child

to consider.

• [ ] returns root.

• [0] returns N1.

• [0,0] returns N2.

• [1,0] returns N3.

getNode (p) returns Some (n, l) if a node n with

childrens l exists or None.

root

N1

N2N3

Figure 12: Tree
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Tree traversal: Moves

root

N1

N2N3

1. TO_CHILD

2. TO_CHILD

3. VISITED

4. TO_SIBLING

5. VISITED

6. TO_PARENT

7. VISITED

8. TO_PARENT

9. VISITED

Figure 13: Iteration through a tree

Inductive MoveSS : Type := TO_PARENT | TO_CHILD | TO_SIBLING | VISITED.

Code 3: Definition of the movements
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Tree traversal: Rules

We can use Small-step semantics to specify rules over moves.

it : (move, path, visited nodes)→ (move′, path′, visited nodes′)

Inductive iterator_smallstep_v X :
Tree X → MoveSS ∗ Path ∗ (Visited X)→ MoveSS ∗ Path ∗ (Visited X) → Prop :=
...

(visit up)
(TO PARENT, p, v)→ (VISITED, p, v)

m 6= TO PARENT m 6= VISITED getNode (p) 7→Some (n, [ ])
(visit no sons)

(m, p, v)→ (VISITED, p, n :: v)

m 6= TO PARENT m 6= VISITED getNode (p) 7→Some (n, l) l 6= [ ]
(down)

(m, p, v)→ (TO CHILD, 0 :: p, n :: v)

getNode (h :: p) 7→Some (n, l) getNode (h + 1 :: p) 7→None
(up)

(VISITED, h :: p, v)→ (TO PARENT, p, v)

getNode (h + 1 :: p) 7→Some (n, l)
(next)

(VISITED, h :: p, v)→ (TO SIBLING, h + 1 :: p, v)
18



Tree traversal: Rules

1. visit up

If we just went back to the parent,

the next move is VISITED.

2. visit no sons

If the node does not have children,

the next move is VISITED.

3. down

If the node has a child

(and the node is not VISITED),

the next move is TO_CHILD.

4. up

If the node is VISITED

and has no siblings,

the next move is TO_PARENT

5. next

If the node is VISITED and has siblings,

the next move is TO_SIBLING

root

N1

N2N3

1. down

2. down

3. visit_no_sons4. next5. visit_no_sons

6. up

7. visit_up

8. up

9. visit_up

Figure 14: Iteration rules applied to tree traversal
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Tree traversal: Theorems

Iterator is deterministic:

∀move path visited ,

(∀move1 path1 visited1, it : (move, path, visited)→ (move1, path1, visited1) ∧

∀move2 path2 visited2, it : (move, path, visited)→ (move2, path2, visited2) )⇒

move1 = move2 ∧ path1 = path2 ∧ visited1 = visited2

Iterator’s traversal is complete:

it : (TO CHILD, [ ], [ ])→∗ (VISITED, [ ], visited)

where visited is the list of the values of all the nodes
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Tree pruning

Add empty Run

(Parity Kernel)

Add Run
Iterate on Run

Column Assignment Column Assignment

Iterate on Columns (Odd, Affected)

Add Run

Add Orbitals Iterate on Orbitals Add and Iterate Orbitals

Add Orbitals

Resulting states

Resulting states

Column Assignment

Figure 15: Tree pruning.
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Figure 15: Tree pruning.
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Tree traversal: Rules Augmented

The iterator should also cut branches of the tree when some conditions are met
(simulated by the evaluation of a function B : node → Bool)

(visit up)
(TO PARENT, p, v)→ (VISITED, p, v)

m 6= TO PARENT m 6= VISITED getNode p 7→Some (n, [ ]) B n =True
(visit no sons true)

(m, p, v)→ (VISITED, p, n :: v)

m 6= TO PARENT m 6= VISITED getNode p 7→Some (n, l) l 6= [ ] B n =True
(down)

(m, p, v)→ (TO CHILD, 0 :: p, n :: v)

m 6= VISITED getNode p 7→Some (n, l) B n =False
(down forbiden)

(m, p, v)→ (VISITED, p, v)

getNode (h :: p) 7→Some (n, l) getNode (h + 1 :: p) 7→None
(up)

(VISITED, h :: p, v)→ (TO PARENT, p, v)

getNode (h + 1 :: p) 7→Some (n, l)
(next)

(VISITED, h :: p, v)→ (TO SIBLING, h + 1 :: p, v)
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Proven Iterator



Toward an Iterator

The iterator (manager) should provide the next move with the minimum of required

information.

• Path

• is the last move toward the parent ?

• move VISITED will be skipped.

23



Iterator in Gallina

(*
what are the assumptions before going in this function? Make no such assumption.
Only need to know only one thing: was the last move TO_PARENT (last_up = true)?
*)
Definition manager X (t:Tree X) (B:X → bool) (pl:option (Path*bool)) :
option (MoveSS) :=
match pl with
| None ⇒ None
| Some (p,last_up) ⇒ match getNode p t with

| None ⇒ None
| _ ⇒

if andb (NodeValid p t B) (negb last_up) then (* ∧ *)
if ChildExists p t then (* | *)

Some TO_CHILD (* | *)
else (* | *)

if SiblingExists p t then (* | This part will be *)
Some TO_SIBLING (* | directly translated *)

else (* | into C++. *)
Some TO_PARENT (* | *)

else (* | *)
if SiblingExists p t then (* | *)

Some TO_SIBLING (* | *)
else (* | *)

Some TO_PARENT (* ∨ *)
end

end.

Code 4: Given a path we can select the next move
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C++: Iterator

/**
* The code is not optimized, it is written as defined in Coq
*/
Move Manager::next_move() {

if (path->isNodeValid() && !is_last_move_to_parent) {
if (path->hasChild()) {

return TO_CHILD;
}
else {

if (path->hasSiblings()) {
return TO_SIBLING;

}
else {

return TO_PARENT;
}

}
}
else {

if (path->hasSiblings()) {
return TO_SIBLING;

}
else {

return TO_PARENT;
}

}
}

Code 5: Definition of the Manager in C++
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The C++ Gallina Equivalence

Figure 16: Code Gallina
Figure 17: Code C++
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Equivalence

∀ tree path last up move path′,

manager(tree, path, last up) 7→ move ∧ apply(move, path) 7→ path′ ⇒

it : (. . . , path, . . .)→ (move, path′, . . .)

Theorem managerEqSemantic :
∀ X (B:X → bool) (tree:Tree X) (m m':MoveSS) (p p':Path) last_up last_up',

(*
Define the equivalence between the last movement and the last_up boolean
value as hypotheses.

*)
(last_up' = true ↔ (m' = TO_PARENT)) →
(last_up = false ↔ (m = TO_CHILD ∨ m = TO_SIBLING)) →
(last_up = true ↔ (m = TO_PARENT) ∧ NodeExists (0::p) tree = true) →

(* Apply the move to the path and return the boolean value to for the manager *)
applyMove p m' = Some (p',last_up') →

(* manager hypothesis *)
manager tree B (Some (p,last_up)) = Some m'

→

(* Either we have an intermediate VISITED step *)
(iterator_nv B tree (m,p) (VISITED, p) ∧ iterator_nv B tree (VISITED,p) (m', p')
(* Or we are right *)
∨ iterator_nv B tree (m,p) (m', p')).

Code 6: Theorem of the implication between the manager and the semantic iterator
27



Tree decomposition

Add empty Run

(Parity Kernel)

Add Run
Iterate on Run

Column Assignment Column Assignment

Iterate on Columns (Odd, Affected)

Add Run

Add Orbitals Iterate on Orbitals Add and Iterate Orbitals

Add Orbitals

Resulting states

Resulting states

Column Assignment

Figure 18: Tree decomposition of the search.
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C++: Tree and moves to stack

Tree representation

root

N1

N2N3

TO CHILD

TO CHILD

TO SIBLING

TO PARENT

TO PARENT

Path iterations

TO CHILD

TO CHILD

TO SIBLING

TO PARENT

TO PARENT

[ ]

[0]

[0 ; 0]

[1 ; 0]

[0]

[ ]

Stack iterations

toChild()

toChild()

toSibling()

toParent()

toParent()

[root]

[N1; root]

[N2; N1; root]

[N3; N1; root]

[N1; root]

[root]

Figure 19: Tree/Path and Stack equivalence. The head of the list/stack is in red.
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What do we have to trust ?
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What do we trust?

• Calculus of Inductive Construction

• Specification and Small-step semantics

• Tree implementation and specification: WEAK LINK

• Translation from Gallina to C++

• GCC

• Coq kernel, Ocaml compiler, Ocaml Runtime, CPU.
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Conclusion



Conclusion

From Code to Proofs:

The orbitals iterator has been proven correct (involution + order) with Hoare logic.

From Proofs to Code:

• Specification of generic tree

• Specification of an iterator in Small-step semantics

• Definition of an abstract iterator (manager) which fully traverse any given tree.

By providing such iterator, we reduce the trust to the tree definition/construction.
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Questions?
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Thank you !
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Differentials: Probabilities and Weight

We define the weight (w) of a differential as follow.

P[(∆1 ⇒ ∆2)] =
1

2w

The weight of a trail Q = (∆0 ⇒ · · · ⇒ ∆n) is the sum of the weight of its

differentials.

w(Q) =

n−1∑
i=0

w(∆i ⇒ ∆i+1)

Remark: Affine applications have no influence on the probabilities of differentials.



Trails in Keccak

Let Q be a trail of differences a0, a1, . . . an:

Q = a0
χ◦π◦ρ◦θ
======⇒ a1

χ◦π◦ρ◦θ
======⇒ ...

χ◦π◦ρ◦θ
======⇒ an

Q = a0
π◦ρ◦θ
====⇒ b0

χ
=⇒ a1

π◦ρ◦θ
====⇒ ...

χ
=⇒ an

Because π ◦ ρ ◦ θ is linear, we have w(ai
π◦ρ◦θ
====⇒ bi ) = 0. Therefore:

Q =

n−1∑
i=0

w(bi
χ
=⇒ ai+1)

The weight depend only on the propagation of bi through χ.



Trails and Affine Applications

Affine applications have no influence on the probabilities of differentials.

Proof:

• K ∈ GF(2)n a constant;

• A a permutation matrix of GF (2)n;

• f : GF(2)n → GF(2)n such as f (x) = Ax + K ;

• ∆ and ∆′ two differences

P(∆
f

=⇒ ∆′) > 0⇔ ∃ t,∆′ = f (t) + f (t + ∆)

⇔ ∃ t,∆′ = At + K + A(t + ∆) + K

⇔ ∆′ = A∆

Therefore the probability of a differential over an affine application is 1. �



Propagation through χ

χ

Figure 20: For a given input difference, list of possible differences after χ.

input propagation through χ

difference offset base elements w(.) || . ||
00000 00000 0 0

00001 00001 00010 00100 2 1

00011 00001 00010 00100 01000 3 2

00101 00001 00010 01100 10000 3 2

10101 00001 00010 01100 10001 3 3

00111 00001 00010 00100 01000 10000 4 3

01111 00001 00011 00100 01000 10000 4 4

11111 00001 00011 00110 01100 11000 4 5

Table 1: Space of possible output differences, weight, and Hamming weight of all row differences.

Adding active bits to the state will never decrease the weight.



Orbitals

a

parity plane P

p[x , z ] =
⊕4

y=0 a[x , y , z ]

Figure 21: State and Parity.

odd columns

even columns

Figure 22: Orbitals, active bits are coloured.



Small-step semantics and big-step semantics

Small steps

Rules which specify from configuration c

and state s, one can go to configuration c ′

and state s′.

< c, s >−→< c ′, s′ >

< c, s >−→∗< δ, σ >

Big steps

Rules which specify the entire transition

from a configuration c and state s′ to a

final state σ

< c, s >⇓ σ

Equivalence big steps - small steps

< c, s >−→∗< δ, σ >⇔< c, s >⇓ σ



Tree traversal: Proof (1/6)

it : (TO CHILD, [ ], [ ])→∗ (VISITED, [ ], visited)

Provide genericity:

∀ path pred , it : (TO CHILD, path, pred)→∗ (VISITED, path, visited :: pred)

By induction:

. . .

n

Figure 23: getNode path = Some(n, [ ])

. . .

n

n1n2. . .nn

Figure 24: getNode path = Some(n, l)



Tree traversal: Proof (2/6)

Goal:

∀ path pred , it : (TO CHILD, path, pred)→∗ (VISITED, path, visited :: pred)

By induction:

getNode path = Some(n, [ ]) X
getNode path = Some(n, l)

. . .

n

(TO CHILD, pred) →∗ (VISITED, n :: pred)

Figure 25: getNode path = Some(n, [ ])



Tree traversal: Proof (3/6)

Goal:

∀ path pred , it : (TO CHILD, path, pred)→∗ (VISITED, path, visited :: pred)

By induction:

getNode path = Some(n, [ ]) X
getNode path = Some(n, l)

. . .

n

n1n2. . .nn

(TO CHILD, x) →∗

(VISITED,V :: x)

(TO SIBLING , x) →∗

(VISITED,V :: x)

(TO SIBLING , x) →∗

(VISITED,V :: x)

Figure 26: getNode path = Some(n, l)



Tree traversal: Proof (4/6)

Goal:

∀ path pred , it : (TO CHILD, path, pred)→∗ (VISITED, path, visited :: pred)

By induction:

getNode path = Some(n, [ ]) X
getNode path = Some(n, l)

. . .

n

n1n2. . .nn

(TO CHILD, x) →∗ (VISITED,V :: . . . :: V :: V :: x)

Figure 27: getNode path = Some(n, l)



Tree traversal: Proof (5/6)

Goal:

∀ path pred , it : (TO CHILD, path, pred)→∗ (VISITED, path, visited :: pred)

By induction:

getNode path = Some(n, [ ]) X
getNode path = Some(n, l)

. . .

n

n1n2. . .nn

(TO CHILD, pred) → (TO CHILD, n :: pred)

(TO CHILD, n :: pred) →∗ (VISITED,V :: . . . :: V :: V :: n :: pred)

(VISITED, . . .) →∗ (VISITED, . . .)

Figure 28: getNode path = Some(n, l)



Tree traversal: Proof (6/6)

Goal:

∀ path pred , it : (TO CHILD, path, pred)→∗ (VISITED, path, visited :: pred)

By induction:

getNode path = Some(n, [ ]) X
getNode path = Some(n, l) X

. . .

n

n1n2. . .nn

(TO CHILD, pred) →∗ (VISITED,V :: . . . :: V :: V :: n :: pred)

Figure 29: getNode path = Some(n, l)
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