Formal Methods in Differential and Linear Trail Search

Benoit VIGUIER
October 7, 2016

Introduction

KEccak

Differential Cryptanalysis
Semantics of Trees and lterators
Proven lterator

Conclusion

Introduction

Hashing vs Encryption

. 4

Hashing
=

Hash ///Q

7

& Plaintext
H Ciphertext .

Encryption

Second pre-image attack

Hashing

I will pay 5 §. ﬁ 0xAB8924
I will pay 5/000 $. ﬁOxABSQM

Collision
attack

Keccak

Sponge construction

Sponge construction + invertible permutation f named KECCAK-f[b].

u Ut

Absorbing phase

L J

Squeezing phase

-
-

Figure 1: A sponge construction

bit rate (r) + capacity (c) = width (b)
KECCAK-f[1600]= (1o x o w0 p 0 8)** and b = 1600

State

Lane

Column

Figure 2: Keccak[200] state

Keccak-f: 6

Linear mixing layer on column parity.

plx.z): @ galx.y.])

E(x,z) =
Px-1.z]e Px+1,z-1]

parity plane &
0-effect

Figure 3: Application of 6 to a state.

Z is called the parity plane.

&
o
=
c
Q
o
~
©
o
1S}
b}
X

Bit-wise cyclic shift rotation on lanes.

Figure 4: The p transformation

Lane transposition.

[e

ST

Mo |

S

Figure 5: The 7 transposition

Non-linear mapping f algebraic degree of 2 which operates on rows.

oo 8 5 -

Figure 6: The x transformation

Differential Cryptanalysis

Differentials

al @ t] =4
| |
f f
))
tr &b t =A;

Figure 7: A differential (A £ Ap)

Given an input difference A1, chances are that a difference Aj will occur. It can be
associated with a probability: P[(A; = Aj)].

Trails

to (<3] ty = Ao
| '
f f
))
t D t] =4
| '
f f
) /
t2 ® & =242

Figure 8: A trail (Mg = A; & A))

Goal: Find a trail (Ag L. 4 Ap) such as A, =0 (& collision).

There are 2% — 1 input differences
possible for Keccak-f[1600].

Estimated number of hydrogen
atoms in the Universe: ~ 22%°

Tree decomposition

Resulting states

:

Resulting states

()
HENN)

k

H
:

e g ‘Add Orbitals

Add Orbitals

L

Column Assignment

===

Add empty Run
(Parity Kernel)

=

Tterate on Orbitals "Add and Tterate Orbitals TD,W“ Assignment

L]

5.

/ Add Ran

Column Assignment

=

Add Run

Figure 9: Tree decomposition of the search.

Trerate on Run

From Code to Proofs

What are the verifications needed?

e orbitals (involution, order)
o colunms assignement (order)
e runs (order, z-canonicity factorization)

e and more. ..
What are the difficulties?

e C++ = no VST, no FRAMA-C, no Why3.

e Huge source code!
What have been done during this Internship?

e Using Hoare Logic.

e Orbitals: involution and order

The time | would have spent on more proofs would not have been compensated by
the gain of the correction.

Tree decomposition

Resulting states

e @ Add Orbitals

Trerate on Obital

Resulting states

[T

k

AR A
RN

)

A and Teate OB Column Assignment

Add Orbitals

EEEE

T

/ Add Run

Column Assignment

Column Assignment

Add Ran
Add empy Run
(Parity Kemel)

Figure 10: Tree decomposition of the search.

Trerate on Ruh

Tree decomposition

[T [
‘ ‘ Resulting states

A @ Add Orbitals

Trerate on Orbitalt

Resulting states

[T

k

AR A
RN

)

A and Teate OB Column Assignment

Add Orbitals

EEEE

T

/ Add Run

Column Assignment

Column Assignment

Add Ran
Add empy Run
(Parity Kemel)

Figure 10: Tree decomposition of the search.

Trerate on Ruh

Tree decomposition

Resulting states

Resulting states

[T

k

A @ Add Orbitals

EELLY B
HEEE)
)

'Add and Tterate Orbitals

umn Assignment

H

Add Orbitals

=

Column Assignment

Trerate on Orbitalt

HEEE

T

/Add Run
=

=

Column Assignment

Trerate on Columns (O2d, Aflected)

Trerate on Ruh

— Add Run
Add empy Run
(Parity Kemel)

Figure 10: Tree decomposition of the search.

Semantics of Trees and lterators

Tree traversal: Tree definition

Section trees.
Variable (X : Type).

(* we do not want the too weak Coq generated
induction principles *)

Unset Elimination Schemes.

Inductive Tree : Type :=
node : X — list Tree — Tree.

Set Elimination Schemes.

Section Tree_ind.
Variable P : Tree — Prop.
Hypothesis HP : V a 11,
(Vx, Inx 11 — P x) —
P (node a 11).

Definition Tree_ind : V t, P t.
End Tree_ind.

End trees.
Figure 11: Tree

Code 1: Tree definition

Induction principle:

1. prove the property for a tree with no children.

2. Assume that the property is True for all children, prove it for the parent.

Tree traversal: Path definition

Definition Path := list nat.
Definition getNode (p:Path) (t:Tree X) : option (Tree X) := ...

Code 2: Path definition

Each node from the tree can be accessed by a
path specified as the list of the index of the child
to consider.

e [] returns root.
e [0] returns Nj.

e [0,0] returns N,.
e [1,0] returns N3.

getNode (p) returns Some (n,/) if a node n with
childrens | exists or None.

Figure 12: Tree

Tree traversal: Moves

9. VISITED

8. TO_PARENT

1. TO_CHILD
7. VISITED

6. TO_PARENT 2. TO_CHILD

3. VISITED

5. VISITEDC/

4. TO_SIBLING

Figure 13: Iteration through a tree

Inductive MoveSS : Type := TO_PARENT | TO_CHILD | TO_SIBLING | VISITED.

Code 3: Definition of the movements

Tree traversal: Rules

We can use Small-step semantics to specify rules over moves.

it : (move, path, visited nodes) — (move’, path’, visited nodes’)

Inductive iterator_smallstep_v X :
Tree X — MoveSS * Path * (Visited X)— MoveSS * Path * (Visited X) — Prop :=

(visit_up)
(TO_PARENT, p, v) — (VISITED, p, v)
m # TO_PARENT m # VISITED getNode (p) —Some (n,[]) .
(visit_no_sons)
(m, p,v) — (VISITED, p,n:: v)
m # TO_PARENT m # VISITED getNode (p) —Some (n, /) I #1]

(down)
(m, p,v) — (TO_CHILD,0 :: p,n:: v)

getNode (h :: p) —Some (n,) getNode (h+ 1 :: p) —None
(VISITED, h :: p,v) — (TO_PARENT, p, v)

(up)

getNode (h+ 1 :: p) —Some (n, /)
(VISITED, h:: p,v) — (TO_SIBLING, h+1:: p,v)

(next)

Tree traversal: Rules

1.

visit_up
If we just went back to the parent,
the next move is VISITED.

visit_no_sons
If the node does not have children,
the next move is VISITED.

down

If the node has a child

(and the node is not VISITED),
the next move is TO_CHILD.

up

If the node is VISITED

and has no siblings,

the next move is TO_PARENT

next
If the node is VISITED and has siblings,
the next move is TO_SIBLING

9. visit_up

8.

7. visit_up

5. visit_no_sons 4. nmext 3. visit_no_sons

Figure 14: lteration rules applied to tree traversal

Tree traversal: Theorems

Iterator is deterministic:

V move path visited,
(VY move; pathy visitedy, it : (move, path, visited) — (movey, pathy, visitedi) A
¥V movey pathy visitedy, it : (move, path, visited) — (movey, pathy, visiteds)) =

move; = movey A path; = pathy A visited, = visited,

Iterator’s traversal is complete:

it : (TO_CHILD, [],[]) —* (VISITED, [], visited)

where visited is the list of the values of all the nodes

20

e g ‘Add Orbitals

Tterate on Orbitals

Resulting states

H
:

Tl nd Terate O Talw Aesgnment

Resulting states

()
HENN)

k

Add Orbitals

L]

5.

/ Add Ran

Column Assignment

Column Assignment

AddRun
Add empty Run
(Parity Kernel)

Figure 15: Tree pruning.

Trerate on Run

Resulting states

Resulting states

e g ‘Add Orbitals

()
HENN)

k

H
:

Add Orbitals

L

Column Assignment

Tterate on Orbitals

Tl nd Terate O Tnlm P

R

/Md Run

Column Assignment

Trerate on Run

AddRun
Add empty Run
(Parity Kernel)

Figure 15: Tree pruning.

21

ted

Tree traversal: Rules Aug

The iterator should also cut branches of the tree when some conditions are met
(simulated by the evaluation of a function B : node — Bool)

(visit_up)
(TO_PARENT, p, v) — (VISITED, p, v)
m # TO_PARENT m # VISITED getNode p —Some (n, []) B n =True
(visit_no_sons_true)
(m, p,v) — (VISITED, p, n :: v)
m # TO_PARENT m # VISITED getNode p —Some (n, /) 1#] B n =True
(down)

(m, p,v) — (TO_CHILD,O :: p, n :: v)

m # VISITED getNode p —Some (n, I) B n =False
(down_forbiden)

(m, p,v) — (VISITED, p, v)

getNode (h :: p) —Some (n, /) getNode (h + 1 :: p) —None
(VISITED, h :: p, v) — (TO_PARENT, p, v)

(up)

getNode (h+ 1 :: p) —Some (n, /)

(next)
(VISITED, h :: p, v) — (TO_SIBLING, h+ 1 :: p, v)

22

Proven lterator

Toward an lterator

The iterator (manager) should provide the next move with the minimum of required
information.

e Path
e is the last move toward the parent ?

e move VISITED will be skipped.

23

Iterator in Gallina

(*
what are the assumptions before going in this function? Make no such assumption.
Only need to know only one thing: was the last move TO_PARENT (last_up = true)?
*)
Definition manager X (t:Tree X) (B:X — bool) (pl:option (Path*bool))
option (MoveSS) :=
match pl with
| None = None
| Some (p,last_up) = match getNode p t with
| None =- None

I - =
if andb (NodeValid p t B) (negb last_up) then (x A *)
if ChildExists p t then (x| *)
Some TO_CHILD (€ *)
else (x| *)
if SiblingExists p t then (x | This part will be *)
Some TO_SIBLING (* | directly translated *)
else (* | into C++. *)
Some TO_PARENT (€] *)
else G *)
if SiblingExists p t then (x| *)
Some TO_SIBLING (€ *)
else (€] *)
Some TO_PARENT *x Vv *)

end

end.

Code 4: Given a path we can select the next move

24

C++: lterator

VEZd
* The code is not optimized, it is written as defined in Cogq
*/

Move Manager::next_move() {

if (path->isNodeValid() && !is_last_move_to_parent) {
if (path->hasChild()) {
return TO_CHILD;

else {
if (path->hasSiblings()) {
return TO_SIBLING;

else {
return TO_PARENT;

}
}
else {
if (path->hasSiblings()) {
return TO_SIBLING;

else {
return TO_PARENT;

Code 5: Definition of the Manager in C++

25

The C++ Gallina Equivalence

Definition manager X (t:Tree X) (B:X — be
option (MoveSS) :=
match pl with
| None = None
| Some (p,last_up) => match getNode p t w
| None => None
- =
if andb (NodeValid p t B) (negb last_u
if ChildExists p t then
Some TO_CHILD
else
if SiblingExists p t then
Some TO_SIBLING
else
Some TO_PARENT
else
if SiblingExists p t then
Some TO_SIBLING
else
Some TO_PARENT
end
end.

Figure 16: Code Gallina

Move Manager::next_move() {

if (path->isNodeValid() && !is_
if (path->hasChild()) {
return TO_CHILD;

else {
if (path->hasSiblings()) {
return TO_SIBLING;

else {
return TO_PARENT;

+
}

else {
if (path->hasSiblings()) {

return TO_SIBLING;

else {
return TO_PARENT;
¥

+
I

Figure 17: Code C++

26

Equivalence

YV tree path last_up move path’,
manager (tree, path, last_up) — move A apply(move, path) — path’ =

it : (..., path,...) — (move, path’,...)

Theorem managerEqSemantic :
V X (B:X — bool) (tree:Tree X) (m m':MoveSS) (p p':Path) last_up last_up',
(x
Define the equivalence between the last movement and the last_up boolean
value as hypotheses.
*)
(last_up' = true <> (m' = TO_PARENT)) —
(last_up = false <> (m = TO_CHILD V m = TO_SIBLING)) —
(last_up = true <> (m = TO_PARENT) A NodeExists (0::p) tree = true) —

(* Apply the move to the path and return the boolean value to for the manager *)
applyMove p m' = Some (p',last_up') —

(* manager hypothesis *)
manager tree B (Some (p,last_up)) = Some m'

=

(* Either we have an intermediate VISITED step *)

(iterator_nv B tree (m,p) (VISITED, p) A iterator_nv B tree (VISITED,p) (m', p')
(* Or we are right *)

V iterator_nv B tree (m,p) (m', p')).

Code 6: Theorem of the implication between the manager and the semantic iterator
27

Tree decomposition

Resulting states

:

H
:

/ Add Ran

Column Assignment

Resulting states
@ e e
e Add Orbitals i E E
Add Otal Teerate on OMBial. Rdd and Teerate OBIAR. Talw Asigment
P
=]
3_7

L

Column Assignment

Add Run

Add empty Run
(Parity Kernel)

Trerate on Run

=

Figure 18: Tree decomposition of the search.
28

C++4: Tree and moves to stack

|
Tree representation i Path iterations Stack iterations
|
I
I
!
' [l [root]
| TO_CHILD toChild()
TO_PARENT i [0l [N root]
! TO_CHILD toChild()
) [0 ; ol [No; Ny root]
3 TO_SIBLING toSibling()
TO_PARENT TO_CHILD ! [1; o0l [Ns; Ny; root]
| TO_PARENT toParent ()
3 [0l [N root]
1 TO_PARENT toParent ()
3 [1 [root]
|
TO_SIBLING 3

Figure 19: Tree/Path and Stack equivalence. The head of the list/stack is in red.

29

What do we have to trust ?

What do we trust?

e Calculus of Inductive Construction

e Specification and Small-step semantics

e Tree implementation and specification: WEAK LINK
e Translation from GALLINA to C++

o GCC

e Coq kernel, Ocaml compiler, Ocaml Runtime, CPU.

30

Conclusion

Conclusion

From Code to Proofs:
The orbitals iterator has been proven correct (involution + order) with Hoare logic.

From Proofs to Code:

e Specification of generic tree
e Specification of an iterator in Small-step semantics

o Definition of an abstract iterator (manager) which fully traverse any given tree.

By providing such iterator, we reduce the trust to the tree definition/construction.

31

Questions?

Thank you !

Differentials: Probabilities and Weight

We define the weight (w) of a differential as follow.

Pl(A1 = Ag)] = o

The weight of a trail Q = (A¢ = -+ = A,) is the sum of the weight of its
differentials.
n—1
w(Q) =D w(Aj = Ajyq)

i=0

Remark: Affine applications have no influence on the probabilities of differentials

Trails in Keccak

Let Q be a trail of differences ag, a1, . .. an:

Xxomopoh X0mopoh X0mopoh

Q= a a an
0 0
Q TOPO bo é a Tropo é an

7ropo€

Because w0 po @ is linear, we have w(a; == b;) = 0. Therefore:

n—1
Q=" w(b = aj1)
i=0

The weight depend only on the propagation of b; through .

Trails and Affine Applications

Affine applications have no influence on the probabilities of differentials.

Proof:

e K € GF(2)" a constant;
e A a permutation matrix of GF(2)";
o f:GF(2)" — GF(2)" such as f(x) = Ax + K;

e A and A’ two differences

PAL AY>0e Tt A =F(t)+F(t+A)

S It,AN=At+ K+ A(t+A)+ K
o A = AA

Therefore the probability of a differential over an affine application is 1. d

Figure 20: For a given input difference, list of possible differences after x.

input propagation through x
difference | offset base elements w() |-l

00000 00000 0 0
00001 00001 | 00010 | 00100 2 1
00011 00001 | 00010 | 00100 | 01000 3 2
00101 00001 | 00010 | 01100 | 10000 3 2
10101 00001 | 00010 | 01100 | 10001 3 3
00111 00001 | 00010 | 00100 | 01000 | 10000 4 3
01111 00001 | 00011 | 00100 | 01000 | 10000 4 4
11111 00001 | 00011 | 00110 | 01100 | 11000 4 5

Table 1: Space of possible output differences, weight, and Hamming weight of all row differences.

Adding active bits to the state will never decrease the weight.

Orbitals

@)

plx. 2 {ea;oaw 4

)

Figure 22: Orbitals, active bits are coloured.
parity plane &

Figure 21: State and Parity.

Small-step semantics and big-step semantics

Small steps Big steps
Rules which specify from configuration ¢ Rules which specify the entire transition
and state s, one can go to configuration ¢’ from a configuration ¢ and state s’ to a
and state s’. final state o
<cs>—<c s> <cs>|o

<c,s>—%< 0>

Equivalence big steps - small steps

< s>"<do>e<c,s>|o

Tree traversal: Proof (1/6)

it : (TO_CHILD, [],[]) —=* (VISITED,[], visited)

Provide genericity:
¥ path pred, it : (TO_CHILD, path, pred) —™ (VISITED, path, visited :: pred)

By induction:

Figure 23: getNode path = Some(n, [])

Figure 24: getNode path = Some(n, I)

Tree traversal: Proof (2/6)

Goal:
V path pred, it : (TO_CHILD, path, pred) —* (VISITED, path, visited :: pred)

By induction:
getNode path = Some(n,[]) v
getNode path = Some(n, I)

(TO_CHILD, pred) —* (VISITED, n :: pred)

Figure 25: getNode path = Some(n, [])

Tree traversal: Proof (3/6)

Goal:
V path pred, it : (TO_CHILD, path, pred) —* (VISITED, path, visited :: pred)

By induction:
getNode path = Some(n,[]) v/
getNode path = Some(n, I)

(TO_SIBLING, x) —* (TO_SIBLING, x) —* (TO_CHILD,x) —*
(VISITED, V/ 5) (VISITED, V :: x) (VISITED, V :: x)

Figure 26: getNode path = Some(n, I)

Tree traversal: Proof (4/6)

Goal:
V path pred, it : (TO_CHILD, path, pred) —* (VISITED, path, visited :: pred)

By induction:
getNode path = Some(n, []) v/
getNode path = Some(n, I)

(TO_CHILD, x) =~ (VISITED, V = ... 2 V 2 V =2 x)

Figure 27: getNode path = Some(n, I)

Tree traversal: Proof (5/6)

Goal:
V path pred, it : (TO_CHILD, path, pred) —* (VISITED, path, visited :: pred)

By induction:
getNode path = Some(n, []) v/
getNode path = Some(n, I)

(VISITED, ...) —* (VISITED, ... (TO_CHILD, pred) — (TO_CHILD, n :: pred)

(TO_CHILD, n :: pred) =~ (VISITED, V :: ... V i V i n it pred)

Figure 28: getNode path = Some(n, I)

Tree traversal: Proof (6/6)

Goal:
V path pred, it : (TO_CHILD, path, pred) —* (VISITED, path, visited :: pred)

By induction:
getNode path = Some(n, []) v/
getNode path = Some(n,I) v

(-
@ O

(TO_CHILD, pred) —* (VISITED, V :: ... V i V i: ni: pred)

Figure 29: getNode path = Some(n, I)

	Introduction
	Keccak
	Differential Cryptanalysis
	Semantics of Trees and Iterators
	Proven Iterator
	Conclusion
	Appendix

