

Intentionally left blank.

A PA N O R A M A O N C L A S S I C A L C RY P T O G R A P H Y

benoît viguier

Benoît Viguier: A Panorama on Classical Cryptography; Designing, Imple-
menting, Breaking, Verifying, and Standardizing Cryptography. © June 2021

A PA N O R A M A O N C L A S S I C A L C RY P T O G R A P H Y

Designing, Implementing, Breaking, Verifying, and Standardizing Cryptography

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

maandag 13 december 2021

om 16:30 uur precies

door

Benoît Georges Pierre Viguier

geboren op 29 maart 1988

te Angers ± Frankrijk

P R O M O T O R E N :

prof. dr. Peter Schwabe

prof. dr. Joan Daemen

C O P R O M O T O R :

dr. Freek Wiedijk

M A N U S C R I P T C O M M I S S I E :

dr. Diego F. Aranha
Aarhus Universitet, Denemarken

prof. dr. Gilles Barthe
Instituto IMDEA Software, Spanje

prof. dr. Lejla Batina Ð voorzitter

prof. dr. María Naya-Plasencia
Inria Paris, Frankrijk

dr. Pierre-Yves Strub
Laboratoire d’Informatique de l’École Polytechnique (LIX), Frankrijk

C’est par le principe des bon repas,
que l’on devient gros et gras.

Ð Grand Père (1929 ± 2002)

At the beginning of your PhD you have to make a choice:
SkyTeam or Star Alliance?

Ð Peter Schwabe, 2016

A C K N O W L E D G M E N T S

This thesis concludes what I consider without doubts as the best four
and a half years of my life, and for this I am extremely grateful for all
the support I was provided with over this period.

First and foremost, I would like to thank my supervisors Peter, Freek,
Joan, and Herman. Their invisible contribution cannot be overstated
as their doors were always open to my questions and doubts; I really
appreciated their openness and our enlightening discussions.

Over the course of those years, I have had the daily company of the
brilliant minds of my PhD colleagues and friends. I had the pleasure
of not only sharing offices Ðthe corner room and pqhqÐ with them,
but also those moments at the multiple conference venues, hotels &
airbnb. For this I thank Daan, Denisa, Joost & Joost, Ko, Matthias,
Niels, Pedro, and Thom. I would also like to extend my gratitude to
my other colleagues Marc, Dan, Jon, John, Bas, Anna G., Anna K.,
Kostas, Louiza, Lukasz, Paulus, Lejla, Hugo, Fabian, Engelbert, Ronny,
Simona, Bart, Eric, Mireille, Eelco, Shanley, and Irma, with whom I had
enjoyable discussions during the 10:30am coffee break. I also would
like to further thank Pedro, not only a colleague but also an amazing
roommate, it was a pleasure having you around and your baking skills
will be missed greatly. Finally, a special mention to Jon and Marc
which whom I share the passion of photography; discussing the craft,
the tools, the technique and the art has always been delightful.

While this thesis is under my sole name, the work presented here
would not have been possible without the numerous collaborations
with my coauthors, especially at the Lorentz Center in Leiden. For
this I thank Tomer Ashur, Daniel J. Bernstein, Guido Bertoni, Fabio
Campos, Joan Daemen, Maria Eichlseder, Lars Jellema, Stefan Kölbl,
Martin M. Lauridsen, Mauk Lemmen, Gaëtan Leurent, Pedro Maat
Costa Massolino, Florian Mendel, Brice Minaud, Lars Müller, Kashif
Nawaz, Michaël Peeters, Yann Rotella, Yu Sasaki, Tobias Schneider,
Peter Schwabe, Daan Sprenkels, François-Xavier Standaert, Yosuke
Todo, Gilles Van Assche, Ronny Van Keer, Freek Wiedijk. They openly
shared their knowledge and provided me with insightful discussions.

I would like to thank Lennart Beringer and Andrew Appel for their
hospitality during my visit at Princeton University. Their insight and
help resolved some of the issues I was facing with the VST, allowing
me to further improve and speed-up my proofs. Similarly, thanks to
John Wiegley for taking the time to explain to me proofs by reflection

vii

during the DeepSpec Summer School, those revealed to be extremely
useful later. In the same field, I would like to thank Jade Philipoom,
Andres Erbsen, and Jason Gross for their inputs on how to improve
my proofs techniques during the HACS workshops. I thank Benjamin
Grégoire and Damien Rouhling for their advices during my short stay
at Sophia-Antipolis.

I am glad to have been able to meet brilliant minds and now friends
at the DeepSpec Summer School 2017 in Philly. Alyssa, Noah, Adam,
Olivier, Matthew, Ekatarina, and Willy are amazing; I am looking
forward to meeting you all again.

All this moving around highlights two things: first, that research
blossoms in collaborations between individuals, and secondly, that I
was extremely lucky to have Peter, Freek and Joan as supervisors. They
provided me with numerous opportunities to visit so many Institutes,
and expand my area of research; for all of this, thank you again.

I would like to give my regards and thanks to Gilles Van Assche and
Michaël Peeters for their support at STMicroelectronics, to Maxime
Van Assche and Michel Vanden Bossche at Mission Critical IT, and
to Ivan Leplumey and Mireille Ducassé at the National Institute of
Applied Sciences (INSA Rennes).

Writing a PhD requires not only a good work environment, but
also the support of friends. For this I am glad to have my dance
trainers Roel and Claudia. Thank you for your motivation and drive
which pushed me to succeed in sports as well as academically. I am
extremely grateful to have Laura as my dance partner, her support
during this last year cannot be highlighted enough, especially through
my multiple and unfortunate injuries. For this, thank you, Laura.

Last but not least, I thank my close friends. Linde, for all those de-
lightful conversations and precious advices you provided me through
those past years; Denisa, for your endless energy while at work; Lily,
for your happiness in our passion for photography; Inga, for your
precious time while you where in the Netherlands.

Et enfin, merci Papa et Maman pour votre soutien alors que je ne vous vois
qu’en rares occassions; merci de me soutenir et de m’encourager dans mes
choix malgré la distance qui nous sépare.

Nijmegen, June 2021
Benoît Viguier

viii

C O N T E N T S AT A G L A N C E

i introduction & preliminaries

1 introduction 3

2 a brief introduction to symmetric cryptography 15

3 formal reasoning in a nutshell 43

ii designing , implementing , breaking

4 gimli 67

5 assembly or optimized c for lightweight cryptog-
raphy on risc-v? 115

6 cryptanalysis of morus 143

iii verifying

7 a coq proof of the correctness of x25519 in tweet-
nacl 181

iv standardizing

8 kangarootwelve : fast hashing based on Keccak- p 231

9 the ietf-irtf standardization process 249

v appendix

bibliography 257

acronyms 289

research data management 291

summary 293

samenvatting 295

sommaire 297

about the author 299

publications 301

ix

TA B L E O F C O N T E N T S

i introduction & preliminaries

1 introduction 3

1.1 A bit of History . 3

1.2 Organization of this Thesis 8

1.3 Contributions . 9

2 a brief introduction to symmetric cryptography 15

2.1 Definitions and Notations 16

2.2 Permutations, Block Ciphers and Hash Functions . . . 18

2.2.1 Elements . 19

2.2.2 Security notions 26

2.3 Sponge Constructions 27

2.3.1 In Hash Functions 28

2.3.2 Duplex constructions for Authenticated Encryp-
tion scheme with Associated Data (AEAD) Schemes 31

2.4 Keccak & SHA-3 . 32

2.4.1 Keccak- f . 32

2.4.2 SHA-3 . 35

2.5 Differential Cryptanalysis 36

2.5.1 Differences . 36

2.5.2 Differential Probability and Weight 37

2.5.3 Trails . 38

2.5.4 Exploiting Trails 39

3 formal reasoning in a nutshell 43

3.1 Logic . 43

3.1.1 Notations . 43

3.1.2 Intuitionistic Logic 44

3.2 Coq . 44

3.3 Verifying Programs . 45

3.3.1 Floyd-Hoare Logic 46

3.3.2 Separation Logic 47

3.4 CompCert and the Verifiable Software Toolchain . . . 49

3.5 A simple proof of the correctness of a big-number addition 50

3.6 From theory to practice 59

3.A Verification of the correctness of A in TweetNaCl . . . 61

ii designing , implementing , breaking

4 gimli 67

4.1 Introduction . 67

4.2 Gimli specification . 68

4.2.1 Notation . 68

4.2.2 The state . 68

4.2.3 The non-linear layer 69

xi

xii table of contents

4.2.4 The linear layer 69

4.2.5 The round constants 70

4.2.6 Putting it together 70

4.2.7 Hashing . 71

4.2.8 Authenticated encryption 72

4.3 Understanding the Gimli design 75

4.3.1 Vectorization . 75

4.3.2 Logic operations and shifts 76

4.3.3 32-bit words . 76

4.3.4 State size . 77

4.3.5 Working locally 77

4.3.6 Parallelization 78

4.3.7 Compactness . 78

4.3.8 Inside the SP-box: choice of words and rotation
distances . 79

4.3.9 Bijectivity of Gimli 80

4.3.10 Application to hashing 81

4.3.11 Application to Authenticated Encryption 82

4.4 Security analysis . 83

4.4.1 Diffusion . 83

4.4.2 Differential Cryptanalysis 84

4.4.3 Algebraic Degree and Integral Attacks 89

4.5 Implementations . 90

4.5.1 FPGA & ASIC 92

4.5.2 SP-box in assembly 95

4.5.3 8-bit microcontroller: AVR ATmega 95

4.5.4 32-bit low-end embedded microcontroller: arm

Cortex-M0 . 97

4.5.5 32-bit high-end embedded microcontroller: arm

Cortex-M3 . 97

4.5.6 32-bit smartphone CPU: arm Cortex-A8 with
NEON . 98

4.5.7 64-bit server Central Processing Units (CPU):
Intel Haswell . 98

4.6 Conclusion: NIST-LWC and third party cryptanalysis. 99

4.A The Gimli permutation in C 101

4.B Gimli-Hash in C . 102

4.C Encryption function of Gimli-Cipher in C 103

4.D Decryption function of Gimli-Cipher in C 104

4.E The Gimli permutation in hacspec 105

4.F Gimli-Hash in hacspec 106

4.G Encryption function of Gimli-Cipher in hacspec . . . 107

4.H Decryption function of Gimli-Cipher in hacspec . . . 109

4.I Avalanche Criterion . 110

5 assembly or optimized c for lightweight cryp-
tography on risc-v? 115

5.1 Introduction . 115

table of contents xiii

5.2 RISC-V . 116

5.2.1 Architecture . 116

5.2.2 Instruction set 116

5.2.3 Executing code 117

5.3 Optimized Algorithms 119

5.3.1 Gimli . 119

5.3.2 Sparkle . 121

5.3.3 Saturnin . 122

5.3.4 Ascon . 124

5.3.5 Delirium . 126

5.3.6 Xoodyak . 129

5.3.7 AES . 132

5.3.8 Keccak . 133

5.4 Comparison with other implementations and additional
benchmarks . 134

5.5 The RISC-V Bitmanip Extension 135

5.6 Conclusion . 136

5.A Benchmark of other implementations 137

6 cryptanalysis of morus 143

6.1 Introduction . 143

6.2 Preliminaries . 145

6.2.1 Specification of Morus 145

6.2.2 Notation . 148

6.3 Rotational Invariance and MiniMorus 149

6.3.1 Rotationally Invariant Linear Combinations . . 149

6.3.2 MiniMorus . 150

6.4 Linear Trail for MiniMorus 151

6.4.1 Overview of the Trail 151

6.4.2 Trail Equation 154

6.4.3 Correlation of the Trail 157

6.4.4 Experimental Verification 157

6.5 Trail for Full Morus . 157

6.5.1 Making the Trail Rotationally Invariant 158

6.5.2 Correlation of the Full Trail 159

6.5.3 Taking Variable Plaintext into Account 161

6.6 Discussion . 162

6.6.1 Keystream Correlation 162

6.6.2 Data Complexity 162

6.6.3 Design Considerations 163

6.7 Analysis on Reduced Morus 163

6.7.1 Forgery with Reduced Finalization 163

6.7.2 Extending State Recovery to Key Recovery . . . 167

6.8 Conclusion . 170

6.A Trail Equation for MiniMorus-640 171

6.B Trail Equation for MiniMorus-1280 172

6.C Trail Equation for full Morus-640 172

6.D Trail Equation for full Morus-1280 175

xiv table of contents

iii verifying

7 a coq proof of the correctness of x25519 in tweet-
nacl 181

7.1 Introduction . 181

7.2 Preliminaries . 186

7.2.1 Arithmetic on Montgomery curves 186

7.2.2 The X25519 key exchange 187

7.2.3 TweetNaCl specifics 188

7.2.4 X25519 in TweetNaCl 188

7.2.5 Coq, separation logic, and VST 190

7.3 Formalizing X25519 from RFC 7748 190

7.4 Proving equivalence of X25519 in C and Coq 193

7.4.1 Applying the Verifiable Software Toolchain . . 194

7.4.2 Number representation and C implementation 197

7.4.3 Towards faster proofs 198

7.5 Proving that X25519 matches the mathematical model 201

7.5.1 Formalization of elliptic Curves 201

7.5.2 Curves, twists and extension fields 207

7.6 Conclusion . 212

7.A The complete X25519 code from TweetNaCl 215

7.B Coq definitions . 220

7.B.1 Montgomery Ladder 220

7.B.2 RFC in Coq . 221

7.C Organization of the proof files 223

7.D Proof by reflection of the multiplicative inverse in GF . 224

iv standardizing

8 kangarootwelve : fast hashing based on Keccak- p 231

8.1 Introduction . 231

8.2 Specifications of KangarooTwelve 232

8.2.1 The inner compression function F 233

8.2.2 The merged input string S 233

8.2.3 The tree hash mode 233

8.2.4 Security claim 235

8.3 Rationale . 235

8.3.1 Implications of the security claim 235

8.3.2 Security of the mode 236

8.3.3 Sakura compatibility 237

8.3.4 Choice of B . 238

8.3.5 Choice of the number of rounds 238

8.4 MarsupilamiFourteen 239

8.5 Implementation . 240

8.5.1 Byte representation 240

8.5.2 Structuring the implementation 241

8.5.3 256-bit SIMD . 242

8.5.4 512-bit SIMD . 243

8.5.5 Comparison with other functions 244

table of contents xv

8.6 Conclusion . 245

8.A KangarooTwelve code 247

9 the ietf-irtf standardization process 249

9.1 The IETF, the IRTF, and the CFRG 249

9.2 Writing an RFC and the Standardization process 250

9.3 RFC References . 252

v appendix

bibliography 257

acronyms 289

research data management 291

summary 293

samenvatting 295

sommaire 297

about the author 299

publications 301

Part I

I N T R O D U C T I O N & P R E L I M I N A R I E S

ªTake the first step in faith. You don’t have to see the whole
staircase, just take the first step.º Ð Martin Luther King Jr.

1I N T R O D U C T I O N

The main subject of this thesis is classical cryptography. As the subtitle
ªDesigning, Implementing, Breaking, Verifying, and Standardizing Cryptog-
raphyº suggests, we will be covering a wide field of the topic with a
large part of this panorama focused on symmetric cryptography.

1.1 a bit of history

For thousands of years secrecy in communication has been needed. A
general communicating with his lieutenant, a king with his armies, a
spy with his country, a queen trying to overthrow her cousin etc. Exam-
ples are numerous. In the following we explore briefly the foundations
of modern cryptography.

1883 ± kerckhoffs’s principle In January and February 1883,
Auguste Kerckhoffs published two articles under the title La Cryptogra-
phie Militaire (Military Cryptography) [Ker83]. These papers surveyed in
depth the cryptographic techniques available at that time, and some
of the cryptanalysis approaches used to break them. In addition to
being one of the first Systematization-of-Knowledge (SoK) paper in the
subject, Kerckhoffs also included practical rules to observe in regard
to the future development of cipher designs. Those rules also known
as the six principles, are the following:

1. The system must be practically, if not mathematically, indeci-
pherable;

2. It should not require secrecy, and it should not be a problem if it
falls into enemy hands;

3. It must be possible to communicate and remember the key
without using written notes, and correspondents must be able
to change or modify it at will;

4. It must be applicable to telegraph communications;

5. It must be portable, and should not require several persons to
handle or operate;

6. Lastly, given the circumstances in which it is to be used, the
system must be easy to use and should not be stressful to use or
require its users to know and comply with a long list of rules.

It becomes quickly apparent that some of those propositions are now
outdated, e. g., number 4. With regard to modern times, aside from

3

4 introduction

the obvious rule number 1, the most important is the second one. This
has become the de facto standard for any newly submitted cipher
as it allows for significantly more cryptanalysis and stronger attack
scenarios.

1917 ± vernam cipher Gilbert S. Vernam was working at AT&T
Bell Labs as engineer when he invented in 1917 what is known today
as the Vernam Cipher [Ver26]. It worked on a teleprinter where the
user would use two paper tapes, one was the message while the other
was the key, both encoding a string of characters in Baudot code, a
5-bit code ancestor of ASCII and UTF-8. Each parallel bit of the tapes
was added modulo 2, effectively doing an exclusive or operation and
generating the ciphertext which was subsequently transmitted over the
cable. Upon reception, the recipient uses then the same key tape and
reproduces the message.

Few years later, Captain of the US Army Joseph Mauborgne sug-
gested to use random information on the key tapes such that they were
as long as the message. By combining this idea with the Vernam cipher,
this implemented what is known today as the One-Time Pad (OTP)1.

1970-today ± era of modern symmetric cryptography In
1972, the National Bureau of Standards (NBS) Ðlater renamed as
National Institute of Standards and Technology (NIST)Ð with con-
sultation of the National Security Agency (NSA) was looking for a
cryptographic algorithm for commercial use, e. g., in the banking
sector. The idea would be to have a unified standard ÐFederal In-
formation Processing Standard (FIPS)Ð that would be secure enough
for the American companies. As none of the first candidates were
deemed suitable, a second call for proposals was made in 1974. That is
when International Business Machines Corporation (IBM) submitted a
candidate cipher similar to Lucifer [Fei73] designed by Horst Feistel
in 1971. After a few modifications suggested by the NSA in 1975, the
cipher was standardized as the Data Encryption Standard (DES) in
FIPS 46 [Sta77] in 1977 and in FIPS 74 [Sta81] in 1981.

It took thirteen years of research to find an attack breaking the
security claim of DES. The first one discovered by Biham and Shamir
is the differential cryptanalysis (see more in Section 2.5). The second
attack was proposed by Mitsuru Matsui in 1993 and is known as linear
cryptanalysis.

Furthermore, with the computing power growing over time, the
56-bit key size became vulnerable to brute force attacks (an attacker
would try all the possible keys) and DES was effectively broken in less
than a day at the beginning of 1999 [FLG98].

In light of such attacks, NIST issued in 1997 a call for propos-
als [SN97] aimed to replace DES. The 3-year process took place with

1 As matter of fact, it was first described in 1882 by the American cryptographer Frank
Miller [Bel11]

1.1 a bit of history 5

3 rounds and 15 candidates. Of the 5 finalists in October 2002, Ri-
jndael [DR02], designed by Joan Daemen and Vincent Rijmen, got
selected as the Advanced Encryption Standard (AES) [NIS01] for its
ªelegance, efficiency, security and principled designº ± Rivest [Riv02].

1976-today ± asymmetric cryptography While symmetric
cryptography makes uses of a shared secret key, this key still needs
to be transported or initially established in a secure manner which
is sometimes hard to ensure. In order to solve the problem, Diffie
and Hellman proposed a protocol [DH76] making use of number
theory. The algorithm is now known as the Diffie-Hellman-Merkle
key-exchange in recognition for Merkle’s contribution to public-key
cryptography [Hel02].

Public-key cryptography or asymmetric cryptography makes use of
two keys. The first oneÐcalled the secret key or private keyÐis kept by
the recipient while the second oneÐcalled the public keyÐis widely
distributed for anyone to use to encrypt a message. The most well-
known example of such system was designed in 1976 by Rivest, Shamir,
and Adleman: the RSA cryptosystem [RSA78] which is used in GNU
Privacy Guard (GPG) to encrypt for example mails.

However, one of the weaknesses of the RSA cryptosystem is the size
of the keys and numbers on which operations have to be computed. To
solve this problem Koblitz [Kob87] and Miller [Mil86] propose to use
Elliptic-Curve Cryptography (ECC), working with significantly smaller
numbers while keeping the same security level.

In 2006, Bernstein proposes Curve25519 [Ber06a] and X25519, the
Diffie-Hellman-Merkle key-exchange protocol associated to it. This
protocol is standardized in RFC 7748 [LHT] and used by a wide variety
of applications [Thi] such as SSH, Signal Protocol, Tor, Zcash, and TLS
to establish a shared secret over an insecure channel.

classical cryptography & quantum attacks The security
of asymmetric cryptography relies mainly on two problems whose
complexity sharply increases with the size of the prime numbers
chosen. On one hand for RSA, it is the difficulty of factoring a large
integer:

given N, find the primes p and q such that p× q = N.

For example, 143 can be easily factorized in 11× 13, however it is
significantly more difficult to do by hand for 5293. On the other hand
the Diffie-Hellman-Merkle protocol relies on the discrete-logarithm
problem, one of its variation being (here simplified):

given z, g, and N prime such that z ≡ gx mod N, find x.

6 introduction

Unfortunately Shor discovered in 1994 a quantum algorithm Ðan
algorithm which requires a quantum computerÐ for integer factor-
ization [Sho94] that solves this problem in polynomial time. In other
words, increasing the size of the number used does not provide signif-
icant improvement in the security of the schemes. Additionally, Shor’s
algorithm also breaks the discrete logarithm problem, putting basically
all the current asymmetric cryptography at risk. For this reason, NIST

started the Post Quantum Cryptography project [SN17].
While asymmetric cryptography is at risk one could think that

symmetric cryptography is safe from such attacks, but that would be
without Grover’s research. In 1996, he discovered another quantum
algorithm which significantly shorten the time to search the correct
key for a cipher [Gro96; Gro97]. For example, assuming a lock with
4 digits, there exists 10 000 possible combinations for the correct
sequence, meaning an average of 10000/2 = 5000 tries for a classical
algorithm. Grover’s algorithm would need only

√
10000 = 100 tries to

find the correct combination. Fortunately this threat is solved by using
longer keys.

Nevertheless, the research into new cryptographic algorithms
which are ªquantum-proofº is part of the Post-Quantum Cryptogra-
phy field as opposed to Classical Cryptography. This thesis being titled a

panorama on classical cryptography, it will not cover them
in the following chapters.

lightweight cryptography In the recent years, an enormous
growth of the ªInternet of Thingsº (IOT) is changing the world. Fore-
casts [Liu19] project the number of interconnected embedded devices
to around 50 billion worldwide by 2030, a five-fold increase in the next
ten years. Driven by the lack of standardized cryptographic algorithms
which are suitable for such constrained environments, NIST started
in 2015 a project (NIST-LWC) [SN15] to solicit, evaluate, and eventu-
ally standardize lightweight authenticated-encryption algorithms with
associated data (AEAD) and hashing.

In light of this project we propose the new cipher Gimli which we
present in Chapter 4.

Lightweight Cryptography (LWC), a sub-field of cryptography, cov-
ers cryptographic algorithms intended for use in constrained hardware
and software environments. The main goal of NIST’s project is to pro-
vide algorithms that are more suitable for use on constrained devices
where the performance of current NIST cryptographic standards is not
acceptable. Thereby, performance figures should be considered on a
wide range of 8-bit, 16-bit and 32-bit microcontroller architectures.

For this reason, in Chapter 5 we chose one of such architecture
and proposed optimized implementations of a selection of the 32

candidates.

8 introduction

Finding such bugs usually relies heavily on manual code inspection,
testing, mutating, and fuzzing. Additionally, while some vulnerabili-
ties may look difficult to exploit, Brumley et al. [Bru+12] have shown
that even a simple carry bug inside an elliptic-curve implementation
may lead to the retrieval of a long-term private key.

This illustrates the need of formal verification in cryptographic
software, in other words mathematically proving the absence of entire
classes of potential bugs and vulnerabilities. However, such techniques
are seen as tedious and time-consuming; for this reason, the most
notable formal approach applied to cryptographic have focused in
generating proven by construction software. This concept has been
used to create HACL* [Zin+17; ZBB16; Pro+17] in the NSS libraries
by Mozilla or the implementation of ECC generated via Coq [Erb+19;
Erb+16; Erb17] in BoringSSL [Bor].

However, while generating correct software improves the global
quality and security of cryptographic software, it does not remove
the need to prove the correctness of already existing codebases. For
this reason, in Section 4.2 of [Bru+12], Brumley et al. describe from a
high-level point of view a method to formally verify the correctness of
cryptographic implementations. This is the approach that we will use
in Chapter 7 to prove a specific implementation of X25519.

1.2 organization of this thesis

This thesis is composed of nine chapters divided into four parts aimed
at covering different areas of classical cryptography. Preliminaries
aside, there is little dependence between chapters, allowing the reader
to quickly skip through some of the material presented here.

part i : introduction & preliminaries is composed of this
chapter followed by two preliminaries (Chapters 2 and 3). In those we
first cover the basics of symmetric cryptography before providing the
foundations for formal reasoning and software verification.

part ii : designing , implementing , breaking spreads over
three chapters. First Chapter 4 covers the design of the cryptographic
primitive Gimli, then Chapter 5 looks at the implementation of cryp-
tographic algorithms, taking as targeted platform the RISC-V archi-
tecture. Finally, Chapter 6 provides the cryptanalysis of Morus with
which we broke the security claim.

part iii : verifying is composed of the single Chapter 7 and takes
a look at the verification of the asymmetric primitive X25519. We verify
that a C implementation matches the RFC specification. Additionally,
we prove that the RFC is correct with regard to the original paper before
going one step further, verifying the correctness of the operations
described in the protocol with respect to the theory of elliptic curves.

1.3 contributions 9

part iv : standardizing is split into two chapters. First, in Chap-
ter 8, we introduce KangarooTwelve a tree-based hash function using
the SHA-3 permutation; then we describe the standardization process
used by CFRG in Chapter 9.

Figure 1.2 describes the dependence between the chapters, providing
multiple possible reading orders. The colors of the nodes highlight
which section of this thesis title is illustrated by the chapter.

1 2

3

4 5

6

7

8 9 Designing

Implementing

Breaking

Verifying

Standardizing
you are

here.

Figure 1.2: Logical dependence of the chapters.

1.3 contributions

The main chapters of this thesis are based on five published papers at
different venues and can also be found on the International Associa-
tion for Cryptologic Research (IACR) ePrint archive. While their main
subject remains unchanged, minor modifications have been applied to
align notations, unify style, combine overlaps, or include additional
pieces of information not available in the original publications due to
the limitation in length of the submissions.

Because they are results of collaborations with a large number of
coauthors, it is often not an easy task to determine the individual con-
tribution of a specific author. As a result in all the papers named below,
authors are listed in alphabetical order with respect to the 2004 culture
statement from the American Mathematical Society (AMS) [Soc].

software availability. Most of the material presented here
comes with associated software which we place in public domain and
make available at:

https://doi.org/10.5281/zenodo.4534692

Additionally, in order to optimally reproduce our results we advise
the use of Linux environments.

https://doi.org/10.5281/zenodo.4534692

10 introduction

the reader , the authors & i . It is often difficult to decide
which narrative to use while writing a thesis. In a general setting, it is
easily apparent that the use of the singular first-person is ill-advised
as it overshadows the work of the coauthors. The ambiguity is more
visible in the use of we. Does it refer to the authors of a specific paper
or does it refer to us Ðthe reader and IÐ going together through the
material presented in this thesis?

The core of this manuscript is composed of published papers, of
which none with a single author; therefore the first-person will natu-
rally refer to my coauthors and I. There will be few exceptions but the
context should help us to resolve this duality.

The rest of this section describes the content of the principal chapters
of this thesis and highlights my individual contribution to the original
related paper.

chapter 4 : gimli

In this chapter we present Gimli, a 384-bit permutation designed to
achieve high security with high performance across a broad range
of platforms, including 64-bit Intel/amd server CPUs, 64-bit and 32-
bit arm smartphone CPUs, 32-bit arm microcontrollers, 8-bit AVR
microcontrollers, FPGAs, ASICs without side-channel protection, and
ASICs with side-channel protection. We further discuss our submission
at the NIST’s lightweight cryptography competition.

This chapter is based on the following publication:

Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat
Costa Massolino, Florian Mendel, Kashif Nawaz, Tobias Schnei-
der, Peter Schwabe, François-Xavier Standaert, Yosuke Todo,
and Benoît Viguier. ªGimli : A Cross- Platform Permutation.º
In: Cryptographic Hardware and Embedded Systems ± CHES 2017.
LNCS 10529. Springer, 2017.

contribution : I participated in the initial design of the permu-
tation and helped in the choice of the constants by implementing
simple prototypes with different parameters, allowing to quickly test
and discard some of the shift and rotational constants in the design.
I also helped in benchmarking the execution speed of the different
linear layer options. Additionally, I am responsible for the implemen-
tations in Python, C and in assembly on the following platforms: avr,
arm Cortex-M0, arm Cortex-M3, and arm Cortex-M4. In terms of
cryptanalysis, I provided the propagation analysis and checked the
avalanche criterion with the method of Monte-Carlo.

chapter 5 : assembly or optimized c for lightweight cryp-
tography on risc-v?
In this chapter we provide different optimization strategies for several
candidates of NIST’s lightweight cryptography standardization project

1.3 contributions 11

on a RISC-V architecture. We studied the general impact of optimizing
symmetric-key algorithms in assembly and in plain C. Additionally,
we present optimized implementations, achieving a speed-up of up to
81% over available implementations at that time, and discuss general
implementation strategies.

This work led to the following publication:

Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller,
Daan Sprenkels, and Benoît Viguier. ªAssembly or Optimized
C for Lightweight Cryptography on RISC-V?º In: CANS 2020:
Cryptology and Network Security. LNCS 12579. Springer, 2020.

contribution : I provided the benchmark and compilation frame-
work for our optimized implementations, allowing us to easily switch
between platforms (simulators or board) and algorithms. Additionally,
I am responsible for the code of Gimli, I fixed the implementation of
Delirium and I ported the assembly implementations of Keccak and
AES from Stoffelen [Sto19] into optimized C. Using our framework I
also automated the benchmark of Weatherley’s optimized implemen-
tations [Wea20].

chapter 6 : cryptanalysis of morus

In this chapter we have a look at Morus, a high-performance authen-
ticated encryption algorithm submitted to the CAESAR competition,
and selected as a finalist. There are three versions of Morus: Morus-
640 with a 128-bit key, and Morus-1280 with 128-bit or 256-bit keys.
For all versions the security claim for confidentiality matches the key
size. We analyze the components of this algorithm (initialization, state
update and tag generation), and report several results.

As our main result, we present a linear correlation in the keystream
of full Morus, which can be used to distinguish its output from
random and to recover some plaintext bits in the broadcast setting.
For Morus-1280, the correlation is 2−76 and can be exploited after
around 2152 encryptions, which is less than what would be expected
for a 256-bit secure cipher. For Morus-640, the same attack results in a
correlation of 2−73, which does not violate the security claims of the
cipher.

To identify this correlation, we make use of rotational symmetries
in Morus using linear masks that are invariant by word-rotations
of the state. This motivates us to introduce single-word versions of
Morus called MiniMorus, simplifying the analysis. The attack has
been implemented and verified on MiniMorus, where it yields a
correlation of 2−16.

We also study reduced versions of the initialization and finalization
of Morus, aiming to evaluate the security margin of these components.
We show a forgery attack when finalization is reduced from 10 steps
to 3, and a key-recovery attack in the nonce-misuse setting when

12 introduction

initialization is reduced from 16 steps to 10. These additional results
do not threaten the full Morus, but studying all aspects of the design
is useful to understand its strengths and weaknesses.

This work led to the following publication:

Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen, Gaëtan
Leurent, Brice Minaud, Yann Rotella, Yu Sasaki, and Benoît
Viguier. ªCryptanalysis of Morus.º In: Advances in Cryptology
± ASIACRYPT 2018. LNCS 11273. Springer, 2018.

contribution : In this collaborative work at the Lorentz center I
provided the team the implementations of MiniMorus, which we used
to verify in practice the biases of the fragments and subsequently of the
trails. By applying simple parallelism optimizations and using vector
instructions, I further verified the complexity of the trail fragments for
Morus-640 and Morus-1280.

chapter 7 : a coq proof of the correctness of x25519 in

tweetnacl

In this chapter we formally prove that the C implementation of the
X25519 key-exchange protocol in the TweetNaCl library is correct. We
prove both that it correctly implements the protocol from Bernstein’s
2006 paper, as standardized in RFC 7748. We also formally prove,
based on the work of Bartzia and Strub, that X25519 is mathematically
correct, i. e., that it correctly computes scalar multiplication on the
elliptic curve Curve25519. The proofs are all computer-verified using
the Coq theorem prover. To establish the link between C and Coq we
use the Verifiable Software Toolchain (VST).

This work led to the following publication:

Peter Schwabe, Benoît Viguier, Timmy Weerwag, and Freek
Wiedijk. ªA Coq proof of the correctness of X25519 in Tweet-
NaCl.º In 34th IEEE Computer Security Foundations Symposium
- CSF 2021.

contribution : In terms of time dedicated to my research, this
paper outclasses all the other publications presented here. I used the
Master’s Thesis by Weerwag as a base, and extended his work to
prove the correctness of Montgomery ladder for Curve25519 over
the quadratic extension field Fp2 , thus providing a computer-verified
version of Bernstein’s proof [Ber06a]. I wrote the specification of RFC
7748 [LHT] in Coq and proved correct with respect to the original
paper. I verified that the crypto scalar multiplication in TweetNaCl
and subsequently all the low level arithmetic matches the Request for
Comments (RFC) specification with the VST.

1.3 contributions 13

chapter 8 : kangarootwelve

In this chapter we present KangarooTwelve, a fast and secure arbi-
trary output-length hash function aiming at a higher speed than the
FIPS-202’s Secure Hash Algorithm (SHA)-3 and shake functions. While
sharing many features with shake128, like the cryptographic primi-
tive, the sponge construction, the eXtendable Output Function (XOF)
and the 128-bit security strength, KangarooTwelve offers two major
improvements over its standardized counterpart. First it has a built-in
parallel mode that efficiently exploits multi-core or single-instruction-
multiple-data (SIMD) instruction parallelism for long messages, with-
out impacting the performance for short messages. Second, relying on
the cryptanalysis results on Keccak over the past ten years, we tuned
its permutation to require twice less computation effort while still
offering a comfortable safety margin. By combining these two changes
KangarooTwelve consumes less than 0.55 cycles/byte for long mes-
sages on the latest Intel SkylakeX architectures. The generic security
of KangarooTwelve is guaranteed by the use of Sakura encoding for
the tree hashing and of the sponge construction for the compression
function.

This work led to the following publication at Applied Cryptography
and Network Security (ACNS):

Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Ass-
che, Ronny Van Keer, and Benoît Viguier. ªKangarooTwelve:
Fast Hashing Based on Keccak-p.º In: Applied Cryptography
and Network Security ± 16th International Conference, ACNS
2018. LNCS 10892. Springer, 2018.

contribution : My contribution to this paper will not be found
in the design, nor in the security analysis or implementations. Under
advises of the Keccak Team, I wrote the draft and submitted to
the Crypto Forum Research Group (CFRG) to make it an RFC. My
experience in standardizing such a function and the interactions with
this working group are summarized in the next chapter.

chapter 9 : the ietf-irtf standardization process

In this last short chapter, we briefly describe the IETF, the IRTF and
the CFRG. Then we have a quick look at the writing of an RFC before
focusing on its standardization process, with an emphasis on the steps
and phases to go through withing the CFRG. Finally, we provide the
timeline of the KangarooTwelve draft.

contribution : I was responsible for the internet draft, more pre-
cisely its writing, attending the meetings to have it move forward, and
ensuring communications with the CFRG.

2A B R I E F I N T R O D U C T I O N T O S Y M M E T R I C
C RY P T O G R A P H Y

In this chapter we aim to provide the necessary background in
symmetric cryptography for the main part of this manuscript, namely
Chapters 4 to 6 and 8. This chapter is divided into five sections which
we advise reading in order of appearance.

In the first section we review basic definitions and notations the
reader will encounter through this thesis. We briefly cover the binary
operations and the few possible representations used to work on data.

In a second section, we use a bottom-up approach. We first review
the basic construction of cryptographic primitives, such as permutations,
and block ciphers. With those notions at hand, we briefly describe hash
functions and encryption schemes with authenticated data. We then
study the associated security notions to those primitives by giving a
brief intuition of how security games work.

The third section serves as foundation for Chapter 4; we provide
a survey on the sponge construction, a structure which is now widely
adopted and used in various new algorithms. We describe the main
design idea and its various applications such as hash functions and
encryption schemes before covering its security properties.

In the fourth section, we provide a direct illustration of the previ-
ously introduced construction: we describe the Keccak-p permutation
and its associated integration in SHA-3. This algorithm is then reused
and serves as groundwork for Chapter 8.

In the last section of those preliminaries, we conclude with a short
introduction to differential cryptanalysis. This attack is used frequently as
one of the first security analysis for any new symmetric cryptographic
design. In particular, we use it in Chapter 4 to assert the security
strength of our design.

Additionally, a second kind of attack similar to differential cryptanal-
ysis and known as linear cryptanalysis will make a guest appearance
in Chapter 6. As a result, terminologies and concepts described in the
previous section will come handy as they can also be applied in that
context.

With the map of this chapter in mind, we turn our focus to the basic
notations and definitions used through this thesis.

15

16 a brief introduction to symmetric cryptography

2.1 definitions and notations

The following notations are used throughout the document:

bits .
A bit is an element of F2. We denote a string of bits with single quotes,
e. g., ‘0’ or ‘1’. To shorten some notations, the n-times repetition of a
bit ‘s’ is denoted ‘sn’, e. g., ‘1104’ = ‘110000’. We only consider two
operations for bit-strings. The concatenation of a and b is denoted as
a∥b; and the truncation of a bit-string s to its first n bits is denoted
⌊s⌋n. The length of a bit-string s is denoted |s|. The empty bit-string is
denoted as ∗. Note that ‘00’ = ∗.

We denote the set of bit-strings of n elements as F
n
2 , and for arbitrary

length bit-strings F
∗
2 .

bytes .
A byte is a string of 8 bits ‘b0b1 . . . b7‘ which can also be represented
by the integer value ∑i 2ibi written in hexadecimal. E. g., the bit-string
‘11110010’ can be equivalently written as 0x4F as depicted in Figure 2.1.
The length of a byte-string s is denoted ∥s∥. In a similar fashion as
with the bits, (0x00)n denotes the n times repetition of the byte 0x00,
for example, (0x00)7 = 0x00 00 00 00 00 00 00.

0 1 2 3 4 5 6 7

1 1 1 1 0 0 1 0

01234567

111100100x4F

Figure 2.1: Example of byte representation.

words .
A word is a sequence of bytes, often seen as the ªnativeº data size
of a CPU. For example, a 16-bit CPU will use 16-bit words. There are
some exceptions; on modern x86 architecture a word is defined to be
16-bit wide for historical reasons. Extensions to 32 and 64 bits lead to
the definition of DWORD Ðas double wordÐ for 32-bit words and
QWORD Ðas quad wordÐ for 64-bit words.

In most cases a word is prefixed by its the width in specifications in
order to avoid ambiguity.

endianness .
The byte ordering inside a word is defined as endianness and primarily
expressed as big-endian and little-endian. In a big-endian system, the
most significant byte of a word is placed at the lowest index position.
On the opposite, on a little-endian system, the least significant byte
is at the lowest index position. This indexing becomes more obvious
when we consider memory addresses.

2.1 definitions and notations 17

As an example, in Figure 2.2 we show how the 32-bit decimal
number 168496141 = 0x0A 0B 0C 0D can be stored in memory on
big-endian and little-endian systems.

32-bit integer

0x0A 0x0B 0x0C 0x0D

0x0A

0x0B

0x0C

0x0D

a

a + 1
a + 2
a + 3

Memory

Big-Endian

32-bit integer

0x0A 0x0B 0x0C 0x0D

0x0D

0x0C

0x0B

0x0A

a

a + 1
a + 2
a + 3

Memory

Little-Endian

Figure 2.2: The Big-Endian and Little-Endian memory representation of
168496141 at an address a.

Big-endian ordering is also referred as the network order, sending
the most significant byte first. Another common example is numbers,
as they are written with their digits in big-endian order.

Little-endian ordering is used in most of recent CPU architectures
such as Intel, arm, and RISC-V etc.. Some architecture such as RISC-V
offers the possibility to switch the endianness of data fetches and
stores.

signedness .
So far we have only seen how bit-strings, and endianness are used
to represent positive (or null) values. Note that those are also called
unsigned.

A signed representation is necessary to allow the use of negative
number. There exists mainly two ways to represent signed values: one’s
complement, and two’s complement. In the one’s complement representa-
tion, a positive value is transformed into its negative equivalent by
inverting all the bits in the word. In the two’s complement representation,
a positive value is made into its negative by inverting all the bits in a
word and adding 1 to the result.

Note that while the range of unsigned values of an 8-bit word is 0

to 255, the range of a signed value of an 8-bit word is -128 (or -127

depending on the representation) to 127 as the bit of highest index is
used to determine the sign of the value.

The fact that two’s complement can easily be implemented in hardware
made this representation the most used today, covering virtually all
processors. As a result, we will only consider this representation in
this document.

binary operations .
To provide consistency through this document, we use the following
notation for bitwise operations:

• ¬a to denote a bitwise negation (neg) of the value a.

18 a brief introduction to symmetric cryptography

• a⊕ b to denote a bitwise exclusive or (xor) of the values a and b.
• a ∧ b for a bitwise logical and (and) of the values a and b.
• a ∨ b for a bitwise logical or (or) of the values a and b,

While neg, xor, and, and or are bitwise operations, they are easily
extended to bit-strings of equal length and words by being applied in
parallel to each bit.

Those operations also have a mathematical equivalent over F2. xor

corresponds to the addition while and is the multiplication. Similarly,
neg is equivalent to adding 1.

Furthermore, we use the following notations for word operations:
• a ≪ k for a cyclic left shift of the value a by a shift distance of k.
• a≪ k for a non-cyclic left shift (i.e, a shift that is filling up with

zero bits) of the value a by a shift distance of k.
• a≫ k for a non-cyclic right shift of the value a by a shift distance

of k. A logical right shift will always pad with zero bits. In an
arithmetic one, the padding will be determined by the sign of
the value, in other words, of the most significant bit.

Using the two’s complement representation, a≪ k is equivalent to
the multiplication of a by 2k (under the assumption that the resulting
value is within the representable range of word). Similarly, a ≫ k is
equivalent to the division of a by 2k.

linear operations .
An important notion that is tightly tied to cryptanalysis is the linearity
(See more in Section 2.5). Considering words as vectors of bit, a func-
tion f : F

n
2 7→ F

m
2 is a linear map if it preserves the addition over F2

(i. e., xor). In other words, for all x, y ∈ F
n
2 :

f (x⊕ y) = f (x)⊕ f (y).

Such functions are equivalent to a matrix multiplication: f : x → A · x
with A am m× n matrix. Similarly, a function f : F

n
2 7→ F

m
2 is affine if

it has an expression of the form:

f : x → Ax⊕ B

with A an m× n matrix and B an m-bit vector. As a direct consequence;
rotations, and shifts, and xor are linear; neg is affine; and and or are
nor linear nor affine. By extension and abuse of language, we consider
that neg is a ªlinearº operation as it preserve the relevant kind of
structure in the context considered.

2.2 permutations , block ciphers and hash functions

We now turn our focus on the basic components of a cryptographic
system. We first describe the elements before discussing the security
notions related to them.

2.2 permutations , block ciphers and hash functions 19

2.2.1 Elements

stream cipher .
Vernam’s approach in 1917 (see Chapter 1), i. e., xoring the plaintext
with the key has the significant drawback of requiring the key and
the message to be of the same length. This inconvenience is solved by
using a stream cipher.

definition 2 .2 .1. A k-bit stream cipher SC is a function which given a
k-bit key returns a keystream of arbitrary length.

SC : F
k
2 → F

∗
2

K 7→ Z

SC Z = key streamK

P C

Figure 2.3: Encryption of a plaintext P into a ciphertext C with a stream cipher
using a key K.

A well-known example of such design is Chacha20, a 256-bit stream
cipher designed by Bernstein in 2008 [Ber08b].

cryptographic permutation.
One of the most basic component of a cryptographic system is the
permutation.

definition 2 .2 .2. A b-bit cryptographic permutation P is a bijective
function that is easy to evaluate.

P : F
b
2 → F

b
2

x 7→ y

To be considered for cryptographic operations, a permutation should
not present a structural distinguisher; in other words, resist to attacks
such as for example differential cryptanalysis, linear cryptanalysis, etc.
An interesting property was formalized by Bertoni et al. [Ber+11a] as
the hardness of constrained-input constrained-output (CICO) problems:
Given two sets X ⊆ F

b
2 and Y ⊆ F

b
2, it should be no easier than for

a random permutation to find an input-output pair (x, y) such that
y = P(x) and x ∈ X, y ∈ Y.

20 a brief introduction to symmetric cryptography

block cipher .
With this definition at hand, we also define a block cipher.

definition 2 .2 .3. A b-bit block cipher with k-bit key is defined by a
couple of functions: an encryption function E and a decryption function D.

E : F
k
2 × F

b
2 → F

b
2

K, P 7→ C

Given a k-bit key K and a b-bit plaintext block M, E produces a b-bit cipher-
text C.

D : F
k
2 × F

b
2 → F

b
2

K, C 7→ P

Similarly, given a k-bit key K and a b-bit ciphertext block C, D retrieves the
b-bit plaintext P.

A well-known example of block ciphers is the AES [DR02]. It works
on plaintext blocks of 128 bits, thus b is equal to 128 bits, and its key
has one of the following length k: 128 bits, 192 bits or 256 bits.

A block cipher must have the following properties: given a key K,
EK : M 7→ E(K, M) is a cryptographic permutation (see Figure 2.4),
and for all keys K, for all plaintexts P, D(K, E(K, P)) = P.

P

x

y

a permutation P .

E

P

K

C

⇔ EK

P

C

a block cipher E .

Figure 2.4: Symmetric cryptographic primitives as permutations.

The base security model of a block cipher is the pseudo-random
permutation (PRP) assumption: for a randomly unknown chosen key K,
the permutation EK should be hard to distinguish from a b-bit permu-
tation taken randomly over the set of (2b)! possibles permutations of b
bits. This idea of indistinguishability is described later in Section 2.2.2.

Designing a block cipher as a single function that mixes properly
all the input bits into a random looking output would be quite a
complex task. Additionally, the cost of evaluating the security strength
of such operation increases with the size of the input. This is why
it is easier to design a simpler (and weaker) function which is then
iterated multiple times over the data. Those are called round functions.

2.2 permutations , block ciphers and hash functions 21

To remove potential symmetry, round function may use a different key
at each iteration. Such round keys are derived from the input key.

Most block cipher designs fall into one±or more±of these categories:
Feistel Network, Add Rotate and Xor (ARX) or Substitution Permuta-
tion Network (SPN).

Feistel networks were made popular by the DES, standardized by the
NIST in 1977 [Sta77], and later the Fast data Encipherment ALgorihtm
(FEAL) proposed by Shimizu and Miyaguchi [SM87] in 1987. They
work on two half state Xi,Le f t and Xi,Right, first by applying a key-
dependent function F on one half and xoring the result into the other
half, before swapping halves. Figure 2.5 illustrates a simple 3-round
Feistel network.

F

K1

F

K2

F

K3

X0,L X0,R

X3,L X3,R

Figure 2.5: A 3-round Feistel cipher.

Such construction has multiple benefits, for example F does not
need to be invertible; additionally since xor and swaps are involutions,
it is easy to provide a decryption function by applying the same
operations in reverse order. Furthermore, by removing the last swap,
the decryption function is the same as the encryption function but
with the keys applied in reverse order.

While Feistel Networks help to decrease the complexity of a block
cipher by limiting the width of the F-function to half the size of the
state, the latter still needs to be carefully thought to avoid weaknesses.

F-function designs sometimes share similarities with SPN (e. g., in
the case of DES). They are made of simple components, each aimed
at a simple goal, which when merged together provide the desired
security property of a block cipher.

22 a brief introduction to symmetric cryptography

The round function of a SPN is usually composed of 3 steps: a round
key addition, the application of possibly multiple Substitution box
(S-box) in parallel, and the application of large Permutation box (P-box).
Figure 2.6 illustrates two rounds of a 16-bit SPN.

S

S

S

S

S

S

S

S

K1

K2

16-bit input

16-bit output

Addition of key K1

Addition of key K2

Application of S-box

Application of S-box

Application of P-box

Application of P-box

Figure 2.6: A 2-round 16-bit Substitution Permutation Network.

The S-box application is also called the non-linear layer, its role is
to ensure that local modifications of a plaintext are changing the
neighboring bits.

The P-box application is also called the linear layer which consists
often of bit shuffling, rotations, or matrix applications. This layer aims
to propagate the local changes of an S-box’s output to the full state.

This idea of small local modification and propagation was described
as confusion and diffusion by Shannon in 1945 [Sha45].

Adding such structure to a block cipher helps to analyze it and
to evaluate its security strength as we only need to pay attention to
individual simple components.

padding .
As a message M may be shorter than b bits, it is necessary to use a
padding scheme, in other words we need to append a bit-string pad
such that M∥pad has a length of b bits. For example pad can be made
of b− |M| bits of value ‘0’, we call this a zero padding scheme; it is often
shortened as M∥‘0∗’ where ‘0∗’ represent as many bits as necessary to
fill the block.

Zero padding schemes are often considered insecure as they do not
allow distinguishing between outputs ending with null bytes: zero
padding to 4 bytes 0x00 00 and 0x00 will yield to the same result: 0x00
00 00 00. For this reason, it is usually preferred to use a reversible
scheme, e. g., pad with a byte 0x01 followed by as many 0x00 as
necessary.

2.2 permutations , block ciphers and hash functions 23

encryption schemes .
Similarly, a message M may also be longer than b bits, this is why
it is necessary to use an encryption mode on top of a block cipher.
The idea is to produce a padded message M′ such that its length
fits a multiple of b. M′ can then be encrypted by blocks of b bytes
(M0, M1, . . . Mn). This process can take multiple forms as illustrated
in Figure 2.7. Furthermore, to avoid the repetition of ciphertext for the
same combination of message and key we use a random message num-
ber N. Additionally, notice that the Counter (CTR) mode of encryption
allows us to transform a block cipher into a stream cipher.

E

M0

K

C0

E

M1

K

C1

N

· · · E

Mn

K

Cn

The Cipher Block Chaining (CBC) mode of encryption.

E

M0
N + 0

K

C0

E

M1
N + 1

K

C1

· · · E

Mn
N + n

K

Cn

The CTR mode of encryption.

Figure 2.7: Two examples of modes of encryption.

definition 2 .2 .4. An encryption scheme is defined by a couple of
functions: an encryption function E and a decryption function D.

E : F
n
2 × F

k
2 × F

∗
2 → F

∗
2

N, K, P 7→ C

Given a n-bit nonce N, k-bit key K and a plaintext P of arbitrary length, E
produces a ciphertext C.

D : F
n
2 × F

k
2 × F

∗
2 → F

∗
2

N, K, C 7→ P

Similarly, given a n-bit nonce N, a k-bit key K and a ciphertext C of arbitrary
length, D retrieves the plaintext P.

24 a brief introduction to symmetric cryptography

Encryption schemes require a similar property as the block ciphers:
for all keys K, nonces N, and plaintexts P, D(N, K, E(N, K, P)) = P.
Without a mode of encryption, a combination plaintext and key always
yield to the same ciphertext, this leads to attacks where an adversary
could guess or re-use (part of) a message due to this repetition property.
By using a nonce, we avoid such weakness.

Note that in place of Nonce, the literature may sometimes use the
terms Initial Value (IV) or Diversifier. Those three serve the same goal,
i. e., avoid the repetition of a ciphertext for the same combination
of message and key. On one hand, an IV has a size that is generally
tied to the width of the block cipher, while the diversifier is a more
generic term. On the other hand, the nonce Ðnumber used only onceÐ
emphasizes non-repetition by using for example an incrementing
counter for each subsequent encryption.

hash functions .
Similarly to an encryption scheme, we also define a hash function as
follows.

definition 2 .2 .5. A t-bit hash function is a function

H : F
∗
2 → F

t
2

M 7→ H

which maps an arbitrary length message M to a t-bits length value H called
either digest or hash.

Such functions are often used to verify the integrity of a document.
Indeed, upon reception of a file M, a user will compute its digest
H′ and compare it to a precomputed value H often obtained prior
reception. If H = H′ then the user can be reasonably sure that the
integrity of the file is preserved.

It is also possible to use hash functions to generate unique IDs, those
can later be used to identify a file or a message in e. g., a signature
scheme.

message authentication code .
Protecting the confidentiality and integrity of a message is not the
only goal of cryptographic operations, it is also interesting to verify its
origin/authenticity; for this we use a Message Authentication Code
(MAC).

definition 2 .2 .6. A t-bit Message Authentication Code is a function

H : F
k
2 × F

∗
2 → F

t
2

K, M 7→ T

which given a k-bit key K, maps an arbitrary length message M to a t-bit
length tag T.

2.2 permutations , block ciphers and hash functions 25

The process is similar to the verification of the integrity of a message
but uses a pre-shared secret key K to compute a candidate tag T′. If
the tags does not match (T′ = T) then we can assume that the message
has not been tampered. For this reason, attack on MACs are called
forgeries.

Most MAC functions make use of a block cipher. For example, we
have CBC-MAC [Sta85] (Figure 2.8), which was standardized as Data
Authentication Algorithm (DAA) in FIPS 113 and is now retired (for
being broken). It was basically the CBC mode of encryption with DES,
but it only returns the last ciphertext as a tag.

E

M0

K E

M1

K

0

· · · E

Mn

K

T

Figure 2.8: CBC-MAC as defined in FIPS 113 [Sta85].

Other well-known examples of MAC are: Poly1305 [Ber05b] which
makes use of the AES, and the Galois Message Authentication Code
(GMAC) [NIS07].

Not all MAC rely on a block cipher: by combining a hash function
with a key, it is also possible to create a MAC.

authenticated encryption scheme with associated data .
By combining a MAC with an encryption scheme we define the follow-
ing.

definition 2 .2 .7. An AEAD is a couple of functions: an encryption
function E and a decryption function D.

E : F
k
2 × F

n
2 × F

∗
2 × F

∗
2 → F

∗
2 × F

t
2

K, N, A, M 7→ C, T

which given a k-bit key K, a n-bit nonce N, associated data A of an arbitrary
length a, and a message M of arbitrary length m produces a ciphertext C of
length m and a t-bit tag T,

D : F
k
2 × F

n
2 × F

∗
2 × F

∗
2 × F

t
2 → F

∗
2 ∪ {⊥}

K, N, A, C, T 7→ M or ⊥

which given a k-bit key K, a n-bit nonce N, associated data A of an arbitrary
length a, a ciphertext C of arbitrary length, and a t-bit tag T produces M if
the tag T is verified, ⊥ otherwise.

26 a brief introduction to symmetric cryptography

2.2.2 Security notions

security claim , security strength and complexity.
When authors publish a cryptographic primitive, they must provide a
security claim, in other words the minimum success probability required
to break their scheme.

This security claim serves at the same time as an assurance for the
users, and as a challenge to fellow cryptographers. Those will try to
break the scheme by finding an attack with a higher probability than
the claim.

A claim is often referred as the security strength of a cryptographic
primitive, and it is tied to the complexity of the best attack against it.
This notion encapsulates the amount of data to be gathered (we call
it data complexity) and/or the amount of computation/number of
queries (also called time complexity) required to successfully perform
the attack. For 2s operations required to break the primitive, we say
the claimed security strength is of s bits.

As no attacks are known upon publication of a primitive, the default
security claim is the exhaustive key search: to try iteratively all the
possible keys until the correct one is found. For a n-bit long key, this
would require at most 2n queries and in average 2n

2 = 2n−1 queries.
The complexity of such attack is therefore 2n−1 and provide a security
strength of n− 1 bits.

Due to its 128-bit key length, AES-128 has a claimed security strength
of 127 bits. This claim was broken by Bogdanov et al. [BKR11] when
they provided a key recovery attack on AES-128 with computational
complexity 2126.1, and later slightly improved by Tao and Wu [TW15]
with time complexity 2126.01 and data complexity 272. As a result,
AES-128 could be considered ªbrokenº. However, as Bogdanov et al.
stated, their ªattacks are of high computational complexity,º and they ªdo
not threaten the practical use of AES in any way.º. Indeed, performing
a simple exhaustive key search using the dedicated AES instructions
available on most modern CPUs would be significantly faster than
doing this computational attack.

security of hash functions .
While the strength of a block cipher is linked to the size of the key,
the security claim of a hash function is often tied to the length of the
digest. In order to estimate the security of a hash construction, we use
a random oracle RO.

definition 2 .2 .8. A random oracle, denoted RO, is an ideal crypto-
graphic primitive which generate random outputs for each query it gets (under
the restriction that an input already queried will return the same response).

When two different inputs of a hash function (or of a random oracle)
produce the same output, a collision is found. The difficulty to produce

2.3 sponge constructions 27

such event is used to define the security strength for a hash function.
By replacing the hash function by a random oracle, we determine the
upper bound for such security claims.

Assuming a random oracle producing a n-bit output, the birthday
paradox tells us that on average

√
2n = 2n/2 queries are needed to

produce a collision [Yuv79]. From this bound we define the generic
collision resistance of a hash function as follows.

definition 2 .2 .9. The collision resistance measures the difficulty of
finding two inputs a and b such as a ̸= b and H(a) = H(b). The generic
attack complexity is 2n/2 (birthday paradox).

But sometimes, an adversary may want to replace a document
whose digest T has already been precomputed. She needs to find
another message M′ such that the hash function produces the same
tag T = H(M′), in other words, find a preimage of the tag. The
complexity of such attack is called preimage resistance.

definition 2 .2 .10. The preimage resistance measures the difficulty
of finding b for a given c such as H(b) = c. The complexity of finding a
preimage is at most 2n.

If, instead of being given a tag T, the original message M is provided
(such as H(M) = T), finding M′ is called a second-preimage. Likewise,
the complexity of such attack is called second-preimage resistance.

definition 2 .2 .11. The second-preimage resistance measures the diffi-
culty to find b for a given a such as a ̸= b and H(a) = H(b). The complexity
of finding a (second) preimage is at most 2n.

Having briefly described basic cryptographic primitives and the
security notions attached to it, we now turn our focus to the sponge
constructions which serve as a base in the design of Gimli (see Chap-
ter 4).

2.3 sponge constructions

In 2007 Bertoni et al. designed a sponge functions [Ber+07; Ber+08a];
such functions make use of cryptographic permutation P applied on a
state of b bits. The state consists of an inner part of c bits, also known as
the capacity of the sponge, and of an outer part of r bits, known as the
rate. In its simplest form, starting from a zeroed state, the construction
is composed of two phases:

• the absorbing phase is processing the input by blocks of r bits,
xoring them into the outer part of state;

• and the squeezing phase is extracting output blocks of r bits.

28 a brief introduction to symmetric cryptography

Each block absorption or extraction is interleaved with a call to the
cryptographic permutation P.

Note that the c bits constituting the inner part of the sponge are
never output during the squeezing phase. Figure 2.9 illustrate the two
phases of a sponge construction with the interleaving calls to P. As
a result, the inner part of the sponge in only modified by when P is
applied, preventing direct tampering of its value.

Absorbing phase Squeezing phase

outer
inner

0

0

M0

c bits

r bits

P

M1

P

M2

P

M3∥pad

P

Z0

P

Z1

P

Z2

Figure 2.9: Basic sponge construction processing four message blocks
M0∥ . . . ∥M3 and returning three blocks Z0∥Z1∥Z2 .

Similarly to encryption schemes the input is processed by blocks
of r bits, it is therefore necessary to use a padding scheme. For this
reason a sponge function is described as sponge[P, pad, r] where P
is the b-bit permutation, r is the rate and pad is the padding scheme.
Finally, the capacity c = b− r is inferred from b and r.

With the construction described in Figure 2.9, it is easy to see how it
can be exploited to create a hash function or a MAC (by first absorbing
the key before processing the message).

In [Ber+11a], Bertoni et al. consider the bound to distinguish a
sponge construction using a random permutation P from a random
oracle. They notice that it is mainly determined by the size of the inner
state (the capacity c) and define the flat sponge claim with the following
formula.

definition 2 .3 .1. Given a capacity cclaim, the success probability of
any attack should be not higher than the sum of that for a random oracle
and 1 − exp(N22−(cclaim+1)), with the workload of the attack having the
computational equivalent of N calls to P (or its inverse P−1).

2.3.1 In Hash Functions

In order to better understand the security strength of a sponge con-
struction with an n-bits output and c-bit capacity, it is easier to illus-
trate how to generate collisions out of it. To do so the first approach is
to target the final n bits extracted, and by using the birthday bound

2.3 sponge constructions 29

we know this requires an effort of 2n/2. The second approach is to find
a collision in the inner part (also called inner-collisions) and append
a message to cancel remaining the difference in the outer part of the
sponge. This second attack has a computational complexity of 2c/2.

Figure 2.10 illustrates such attack. An adversary will first find M0
and M1 such that M0 ̸= M1 and their absorption leads to a state
after the application of the permutation such that there is a collision
in the inner part. Note that M0 and M1 may be of different length
or composed of multiple blocks. As the adversary is working in full
knowledge of the state, she can produce two messages blocks to
cancel the differences in the outer part of the sponge and by doing
so, produce a full state identity between the two messages. It is trivial
then to produce colliding output from such state.

0

0

M0

c bits

r bits

P

γ

α

β

γ

δ

P

M2

P

Z

0

0

M1

c bits

r bits

P

γ

β

α

γ

δ

P

M2

P

Z

Figure 2.10: Exploiting inner-collisions to generate colliding outputs.

definition 2 .3 .2. For a sponge construction with a capacity c bits and
an n-bit output, the security strength against collisions is min(c/2, n/2)
bits.

This security strength, represents the complexity of a generic attack
(i. e., an attack which does not take advantage of weaknesses of the
permutation used) against a sponge construction using a random
permutation. As a result, this gives us a maximum bound on the
security claim.

We now turn our focus on preimage resistance, from Definition
Definition 2.2.10, we know that a n-bit output hash function will
require at most 2n queries. As with the collision resistance, it is possible

30 a brief introduction to symmetric cryptography

to target inner-collisions. Figure 2.11 illustrate such attack against an
output Z, where we use a Meet-In-The-Middle (MITM) approach to
produce inner-collisions.

On one hand we generate multiple couple values (M, δ1), on the
other hand we attempt to perform a state recovery from the output
Z, in other words we try to guess a value σ such that Z||σ = P(β||δ2).
Because P is a permutation, we make use of its inverse P−1 and
generate candidate values β||δ2.

The underlying idea is to find M and σ such that δ1 = δ2. Upon
discovery, the following steps are the same as for a collision search,
we craft the message M||(α⊕ β) and generate the requested Z.

0

0

M

c bits

r bits

P

δ1

α

Calls to P

?
= δ2

β

P

Z

σ

Z

Guess σ

Calls to P−1

Figure 2.11: Targeting a preimage of Z by finding inner-collisions with a MITM
approach.

This is similar to finding collisions, thus with the birthday paradox
we know that this attack requires an effort of 2c/2 queries.

definition 2 .3 .3. For a sponge construction with a c-bit capacity and an
n-bit output, the preimage resistance has a security strength of is min(c/2, n)
bits.

Note that this generic attack is also applicable in second-preimage
search. As a result, the security strength directly translates to the
second-preimage resistance.

definition 2 .3 .4. For a sponge construction with a c-bit capacity and
an n-bit output, the second-preimage resistance has a security strength of is
min(c/2, n) bits.

The iterative nature on a state of the sponge construction makes
it easy to produce an output of arbitrary length, and thus define a
eXtendable Output Function (XOF) [Per14]. Such function takes two
inputs: a message and an output length. This allows us to create a

2.3 sponge constructions 31

stream-cipher: we first absorb a Nonce N and key K and extract a
keystream by blocks of r bits (Zi) interleaved with calls to the permu-
tation P. Output blocks are then xored into each message blocks (Mi),
producing a ciphertext (Ci). Figure 2.12 illustrates this process.

P0

K||N

M0

Z0

P

C0

M1

Z1

P

C1

M2

Z2

P

C2

. . .

Figure 2.12: Using a sponge construction as a stream cipher.

Stream cipher only aims to protect the confidentiality of the message,
it is good practice to additionally produce a MAC so that the integrity
of the plaintext or ciphertext can be verified.

As we already presented in Definition 2.2.7, this combination defines
an AEAD scheme. We now describe here how sponges mode are used
to produce such constructions.

2.3.2 Duplex constructions for AEAD Schemes

In order to produce an authenticated tag, we initialize the state
with a nonce N and key key; such constructions are called Keyed-
Sponge [Ber+11c]. Then similarly to hashing, the Associated Data (AD)
(e. g., an HTTP header) and messages are absorbed into the state by
blocks of r bits. Likewise, a ciphertext is produced upon each message-
block absorption: the outer part of the state is seen as a keystream
and xor it with the message. In other words, the keystream used
for the block Mi is the ªdigestº of the key and the previous blocks
M0 . . . Mi−1. Once the last message block has been processed, we
squeeze the sponge one last time to retrieve the authentication tag T.
This construction is called SpongeWrap [Ber+11b] and illustrated in
Figure 2.13.

P0

K||N

Initialize.

P

Ai

Process A.

Ci

P

Mi

Process M,
retrieve C.

P

Ti

Generate T.

Figure 2.13: An example of Authenticated Encryption sponge construction:
SpongeWrap (with N, simplified).

32 a brief introduction to symmetric cryptography

This mode was subsequently improved by Sasaki and Yasuda [SY15]
by absorbing the additional data into the inner part of the keyed
sponge as it does not produce ciphertext. To provide speed-ups, it is
also possible to apply full-state absorption: as proposed by Bertoni
et al. [Ber+12], the entirety of the state is used to process data. This
idea, pictured in Figure 2.14, was later proven secure by Mennink, Rey-
habinitabar and Vizár [MRV15] and improved by Daemen, Mennink
and Van Assche [DMA17].

P0

K||N

Initialize.

Ci

P

Mi

Ai

Process M and A
in parallel.

P

Al+i

Process A

P

Ti

Generate T.

Figure 2.14: Another example of Authenticated Encryption sponge construction:
FSW (Full-state SpongeWrap, simplified).

2.4 keccak & sha-3

In August 2015, the National Institute of Standards and Technology
(NIST) published the new FIPS 202 [NIS15] for the hash function family
known as SHA-3. It makes use of a sponge construction and a permuta-
tion Keccak- f [Ber+08b] which we describe in detail below. Then we
describe the different variations proposed by NIST and their respective
security claims.

2.4.1 Keccak- f

Keccak- f [Ber+11d] is a family of seven permutations denoted by
Keccak- f [b] with a bit-width b ∈ {25, 50, 100, 200, 400, 800, 1600}. The
state of Keccak- f is organized as a parallelepiped of dimension 5× 5×
w where w ∈ {1, 2, 4, 8, 16, 32, 64}. Each bit is located by its coordinates
(x, y, z) (See Figure 2.15). A bit is active if it has value 1 and passive
otherwise.

Given this representation of a state, we have:
• in orange in Figure 2.15, a set of 25 bits with fixed z coordinate

is called a slice,
• in blue in Figure 2.15, a set of w bits with fixed (x, y) coordinate

is called a lane,
• in cyan in Figure 2.15, a set of 5 bits with fixed (y, z) coordinates

is called a row,
• in red in Figure 2.15, a set of 5 bits with fixed (x, z) coordinates

is called a column.

2.4 keccak & sha-3 33

For a better visualization of active bit positions inside the state, a
lighter representation will also be used (see Figure 2.16).

x

y

z

Figure 2.15: State structure of
Keccak- f [200].

x

y

z

Figure 2.16: Light representation
of the state structure
where the bit (3, 2, 1) is
active.

Keccak- f is composed of 12 + 2× log2(w) iterations of a round
permutation composed of 5 transformations:

f = ι ◦ χ ◦ π ◦ ρ ◦ θ

θ (theta).
θ is a linear mixing layer which operates on columns.

a

parity plane P
θ-effect

θ(a)

θ

E(x, z) =
P [x− 1, z]⊕P [x + 1, z− 1]

p[x, z] :
⊕4

y=0 a[x, y, z]
⊕

Figure 2.17: θ.

The parity function (p) computes the parity plane P as the sum over
the columns. From this plane the θ-effect can be deducted before being
added back to the state.

ρ (rho) and π (pi).
Both ρ and π operate on lanes. While ρ is a bit-wise cyclic shift
(Figure 2.18), π transposes the position of the lanes (Figure 2.19).

2.4 keccak & sha-3 35

2.4.2 SHA-3

While FIPS-202 defines the permutation Keccak- f [b] for a width b ∈
{25, 50, 100, 200, 400, 800, 1600}, only Keccak- f [1600] is used in the
standardized hash function and eXtendable Output Function (XOF).
FIPS-202 defines Keccak[c] as a sponge on top of Keccak- f [1600] with
a c-bit capacity and a multi-rate padding. The latter is pad10∗1: it returns
the input followed by ‘1’, then by a (possibly empty) string of ‘0’s, and
finally by a ‘1’.

The standard defines four hash functions: SHA-3-224, SHA-3-256,
SHA-3-384, SHA-3-512, with respective output length 224, 256, 384 and
512 bits; and two XOFs: shake128 and shake256 where the output
length is free. In order get the preimage resistance at the required level,
the capacity must be of 448 bits (and respectively 512, 758, 1024 bits).
Likewise, the XOFs will have a capacity of 256 and 512 bits.

Note that SHA-3-256 and shake256 both uses Keccak[512], thus
for a same message M, it would not be possible to differentiate their
output truncated to 256 bits. This is why FIPS-202 defines a different
suffix appended to the input before the multi rate padding: the hash
functions will use a ‘01’ suffix (Equation (2.1)), and the XOFs will use
‘1111’ suffix (Equation (2.2)).

SHA-3-256(M) = Keccak[512](M∥‘01’) (2.1)

shake256(M) = Keccak[512](M∥‘1111’) (2.2)

Table 2.1 summarizes the differences between the functions stan-
dardized in FIPS 202 while Table 2.2 sums up the security claim of the
SHA-3 functions.

Table 2.1: Capacity, rate, output length, and suffix of the SHA-3 functions.

Algorithm capacity c rate r output length suffix

SHA-3-224 448 1152 224 ‘01’
SHA-3-256 512 1088 256 ‘01’
SHA-3-384 768 832 384 ‘01’
SHA-3-512 1024 576 512 ‘01’

shake128 256 1344 ∗ ‘1111’
shake256 512 1088 ∗ ‘1111’

Table 2.2: Security claim of the SHA-3 functions.

Algorithm output size Security strength in bit
collision preimage

SHA-3-224 224 112 224
SHA-3-256 256 128 256
SHA-3-384 384 196 384
SHA-3-512 512 256 512

shake128 n min(n/2, 128) min(n, 128)
shake256 n min(n/2, 256) min(n, 256)

36 a brief introduction to symmetric cryptography

2.5 differential cryptanalysis

Differential cryptanalysis is a statistical attack on the DES presented
at Crypto 90 by Biham and Shamir [BS90; BS91]. Their approach uses
a distinguisher based on difference propagation with relatively high
probability, leading in the collection of 247 chosen plaintexts. After
some data filtering, they compute the encryption key by analyzing
236 plaintexts in 237 time, effectively breaking DES faster than brute
force [BS92]. Note that this break claims does not differentiate between
the data complexity and the computational complexity. As a result,
a brute force attack with dedicated hardware as performed in 1999

would be more efficient [FLG98].

2.5.1 Differences

This method focuses on pairs of inputs xP and x′P, and their difference:

∆P = xP ⊕ x′P. (2.3)

When xP and x′P are inputs of a function f (such as a round function,
a S-box. . .) with a difference ∆P, we study the resulting difference ∆T
of their output xT = f (xP) and x′T = f (xT):

∆T = xT ⊕ x′T = f (xP)⊕ f (x′P) (2.4)

= f (xP)⊕ f (xP ⊕ ∆P). (2.5)

We refer to a pair of differences ∆P and ∆T as a differential (∆P ⇒ ∆T)
(see Figure 2.21).

xP
⊕

x′P = ∆P

f f

xT
⊕

x′T = ∆T

Figure 2.21: A differential (∆P ⇒ ∆T).

By studying how differences behave when applied to different kind
of functions, we notice that:

• the key addition, i. e., the xor with a key, does not change the
difference ∆ in the pair of plaintexts (x, x′),

(x⊕ K)⊕ (x′ ⊕ K) = (x⊕ K)⊕ ((x⊕ ∆)⊕ K)

= (x⊕ K)⊕ (x⊕ K)⊕ ∆

= ∆

2.5 differential cryptanalysis 37

• a linear application L (e. g., a multiplication by a boolean matrix)
on the inputs only change the shape of the difference ∆ in the
pair of plaintexts (x, x′).

L(x)⊕ L(x′) = L(x)⊕ L(x⊕ ∆)

= L(x)⊕ L(x)⊕ L(∆)

= L(∆)

• Substitution boxes are known to be non-linear. Even if we know
the value of the xor of inputs, we cannot know with certainty
the xor of the outputs as several options are possible, aside from
the case of equal inputs leading to equal outputs. However, we
notice that for a given input difference not all output differences
are possible, and some are much more frequent than others.

With those properties in mind, we study the probability of differentials,
and when possible, they are usually computed and summarized in a
differential distribution table (DDT) [BS90].

2.5.2 Differential Probability and Weight

For a cryptographic function f : F
n
2 → F

m
2 , even if the input value x is

unknown, we may be able to derive some statistical information about
difference propagation. For example, considering all possible inputs x,
we can infer the probability of each differential (α⇒ β) by computing
the cardinality of the solution set S(α, β).

S(α, β) = {x ∈ F
n
2 : β = f (x)⊕ f (x⊕ α)}. (2.6)

If the cardinal #S(α, β) is 0, it means that the input difference α will
never lead to the output difference β for all possible input x, as a result
we call (α ⇒ β) an impossible differential. Otherwise, a differential is
called possible.

definition 2 .5 .1. For a function f with domain F
n
2 , given a differential

(α⇒ β), we denote the Differential Probability (DP) as:

DP(α, β) =
#{x ∈ F

n
2 : β = f (x)⊕ f (x⊕ α)}

2n =
#S(α, β)

2n (2.7)

Another way to quantify the DP is to consider the weight of a
differential [Dae95]:

definition 2 .5 .2. For a function f with domain F
n
2 , the weight can

also be seen as :

w(α
f
=⇒ β) = n− log2 #S(α, β) (2.8)

Note the weight is undefined for impossible differentials as #S(α, β) = 0.

38 a brief introduction to symmetric cryptography

A simpler relation between the DP and its weight w is illustrated in
Equation (2.9).

DP =
1

2w (2.9)

As a result, the greater the weight, the harder it will be to exploit
the differential.

2.5.3 Trails

While a single differential may cover an S-box or a simple round func-
tion, it is possible to combine them in order to propagate the statistical
information through the multiple rounds of the cipher. For exam-
ple, given the differentials (α ⇒ β) and (β ⇒ γ), we build the trail
(α⇒ β⇒ γ) with DP(α, β, γ) (see Figure 2.22).

x1
⊕

x′1

x2
⊕

x′2

x3
⊕

x′3

= α

= β

= γ

f f

f f

(α⇒ β) with DP(α, β)

(β⇒ γ) with DP(β, γ)

Figure 2.22: By combining two differentials (α⇒ β) and (β⇒ γ), we build a
trail (α⇒ β⇒ γ).

The probability of DP(α, β, γ) can be seen as the probability that
the events (α⇒ β) and (β⇒ γ) with respective probability DP(α, β)
and DP(β, γ) happen at the same time. As a result for independent
differentials, the probability of the trail (α⇒ β⇒ γ) is

DP(α, β, γ) = DP(α, β)× DP(β, γ).

In practice the round function f makes use of a key K, as a result
the differential probability DP(α, β) depends on that key and becomes
a stochastic variable; in such instance we consider the Expected Differ-
ential Probability (EDP) of the set of functions { fK}, and by using the
Hypothesis of Stochastic Equivalence [LMM91], we assume that

DP(α, β) ≈ EDP(α, β).

2.5 differential cryptanalysis 39

We extend this notion to trails: for χ = (∆0 ⇒ . . .⇒ ∆n), we infer
the Expected Differential Probability of the trail as the product of the EDP

composing that trail:

EDP(χ) =
n−1

∏
i=0

EDP(∆i ⇒ ∆i+1).

From this expression, we extend the notion of weight to trails.

definition 2 .5 .3. The weight of a trail is the sum of the weight of the
differentials that compose this trail.

As a multi-round differential (∆0, ∆n) is made of multiple trails, its
Expected Differential Probability is the sum of the trails EDP:

EDP(∆0, ∆n) = ∑
∆1

· · · ∑
∆n−1

EDP(∆0, ∆1, . . . , ∆n−1, ∆n)

As a consequence, the Expected Differential Probability of a trail
gives a direct lower bound of the Expected Differential Probability of
the corresponding multi-round differential.

In place of trails, the literature may use paths, differential character-
istics [BS90] or characteristics. Nevertheless, the idea stays the same:
propagating differences through multiple rounds of the cryptographic
function.

2.5.4 Exploiting Trails

By combining differentials into a trail, it may be possible to build what
is called an iterative differential, a differential whose input difference
is equal to its output difference. Discovering such a property usually
reveals a major weakness in the design of the cryptographic function
being analyzed. For example, in order to break the DES, Shamir and
Biham [BS92] used the 2-round iterative differential ((ψ, 0)⇒ (ψ, 0))
where ψ = 0x16900000. The base differential (ψ⇒ 0) has a DP of 1

234
and is easily extended to ((ψ, 0)⇒ (ψ, 0)) (see Figure 2.23).

By finding a low weight trail traversing multiple rounds of a block
cipher or permutation, it is possible to perform a key recovery attacks.

0r attacks . Given block cipher EK and assuming we found a low
weight n-round characteristic χ such as (∆0 ⇒ ∆1 ⇒ . . . ⇒ ∆n), we
can apply a 0R attack [BS90; Bih04; Bih05] in two steps.

First we consider the differential δ = (∆0 ⇒ ∆n) and generate
a large number of message couple (M, M′) such that M ⊕ M′ =
∆0. Then we collect their respective ciphertext (C, C′) such that C =
EK(M), C′ = EK(M′). We only keep the ones following the equation
C⊕ C′ = ∆n, and discard the others as we are only interested in the
pairs satisfying δ.

40 a brief introduction to symmetric cryptography

F

F

ΩP = (ψ, 0) = 0x16900000 00000000

ΩT = (ψ, 0) = 0x16900000 00000000

Always

with probabiliy about 1
234

0x000000000x00000000

ψ = 0x169000000x00000000

Figure 2.23: The 2-round iterative differential with a probability of 1
234 .

Under the assumption that most of the pairs following δ also follow
χ (i. e., δ is dominated by a single trail), their last round are likely
to satisfy δ′ = (∆n−1 ⇒ ∆n). We take each S-box or other non-linear
operations of the last round and use δ′ to derive their individual
differentials (αi ⇒ βi). By using the solution set S(αi, βi), we recover
possible intermediate values during the encryption. If we combine
those pieces of information with the values of C and C′, we learn
segments of the last round key Kn and thus reduce the size of the key
space.

Note that due to the nature of the solution set S(α, β), multiple
equivalent keys will be produced for each S-box. By using multiple
ciphertext pairs, and intersecting the sets of key candidates, we are
able to speed-up the key recovery process.

1+r attacks . Instead of attacking the last key by using output
differences, it is also possible to attack a previous subkey of a n-round
cipher. Such methods are called 1R (or 2R, . . .) attacks and need a trail
χ for n− 1 (respectively n− 2 . . .) rounds with low weight.

Considering a low weight trail χ = (∆0 ⇒ . . . ⇒ ∆n−1) and the
differential δ = (∆0 ⇒ ∆n−1), we encrypt a large number of pairs of
plaintexts satisfying ∆0. Similarly to a 0R attack, we decompose the
last difference ∆n−1 into fragments αi matching the next non-linear op-
erations, and we use them to target selected bits of the encryption key.
By combining those bits into partial keys kj we are able to recover the
correct key by a simple statistical analysis. Indeed, for each collected
ciphertext pair (C, C′) we decrypt the last round with the partial keys
kj and compute the resulting difference α′i . If αi = α′i , we increase the
score of kj. In the end, the partial key with the highest score gives us
the desired bits of the encryption key. With this knowledge, the rest of
the key-space is left to brute force. Figure 2.24 illustrates such attack
with a 2-round differential (0x00A0⇒ 0x0100).

2.5 differential cryptanalysis 41

S0

S0

S0

S1

S1

S1

S2

S2

S2

S3

S3

S3

K1

K2

K3

∆0 = 0x00 A0

Ω = C⊕ C′

S2 differential (‘1010’⇒ ‘0001’)

S0 differential (‘0100’⇒ ‘0010’)

∆1 = 0x40 00

∆2 = 0x01 00

The input difference for S1 is α = ‘0001’.

The output difference for S1 is β.

P-box

P-box

P-box

Figure 2.24: A 2-round trail (∆0 ⇒ ∆1 ⇒ ∆2) over a 3-round SPN leading to
the recovery of 4 bits of K3 (highlighted in red).

The basic assumption for such attack is the wrong-key randomization
hypothesis: upon decryption of the last round with a wrong partial key,
the observed difference will be uniformly random. This means that
the desired difference αi will be no different from all the others. On
the other hand, for a correct partial key, the difference αi will appear
significantly more often. The underlying idea is that E−1

K will behave
as a random permutation for a wrong key K, but is likely to follow the
trail χ with the correct key fragment.

It is possible to speed up the process by using impossible differentials.
For that we need to distinguish two kinds of pairs of plaintexts: the
right pairs which satisfy the differential (∆0 ⇒ ∆n−1), and the one who
does not, namely the wrong pairs which we would like to discard as
they do not follow χ. For example in Figure 2.24, by computing the
difference Ω = C⊕ C′, we can check if the differential (∆2 ⇒ Ω) is
possible, if not, thus an impossible differential, we can safely discard
the pair.

42 a brief introduction to symmetric cryptography

searching for collisions . Differential cryptanalysis is also
applicable to hash functions. Remember that in the case of a sponge
construction, it is possible to construct collisions either in the outer part
during the squeezing phase or in the inner part during the absorption
phase.

For example, given a sponge construction using a cryptographic
permutation P, we study the trails of P and try to find one starting from
a non-null difference ∆in = α∥‘0c’ and such that the output difference
is ∆out = β∥‘0c’. Then by absorbing multiple pairs of messages (M, M′)
such that M⊕M′ = ∆in, we try to find a right pair satisfying ∆out. Once
discovered it is easy to cancel the remaining difference β and extract
as many collisions as desired. This simplified attack is illustrated in
Figure 2.25.

P∆in = α∥‘0c’ ∆out = β∥‘0c’

Permutation P with a differential (∆in ⇒ ∆out).

0

0

(M, M′)

α

0c bits

r bits

P

0

β

(0,β)

P

collision

Figure 2.25: Simplified collision generation from a differential trail in a sponge
construction.

As a result, the difficulty to find a collision is directly tied to the DP

of the trail. An adversary is thus faced to two problems: (1) finding a
trail with a weight low enough to be exploitable and with differences
satisfying collision conditions, and (2) using this trail to generate the
collision.

3F O R M A L R E A S O N I N G I N A N U T S H E L L

This chapter aims to provide the foundations necessary for the under-
standing of the work presented in Chapter 7. A reader already familiar
with Coq and the separation logic in VST may skip directly ahead.

In the following, in Section 3.1, we provide a refresher about logic by
first describing the notation used before introducing the intuitionistic
logic.

We continue in Section 3.2, where we briefly introduce the Coq
theorem prover before turning our attention to the verification of
software in Section 3.3. We review the Floyd-Hoare logic and describe
its basic rules. Finally, we exhibit its limitations and introduce the
separation logic.

Section 3.4 provides a short introduction to the tools that we use
later, while Section 3.5 illustrates how such methods are applied in
practice.

Note that Chapter 7 of this manuscript is focused on the use in
practice of formal verification rather than their development and the
theory behind it. As a result some of the notations and ideas presented
here have been abbreviated to ease the reader’s experience and provide
a broad intuition of the field.

For a more thorough introduction into the formal verification world
and the Coq theorem prover, we highly recommend reading the Soft-
ware Foundation series1 by Pierce et al. [Pie+18b; Pie+18a].

3.1 logic

3.1.1 Notations

We adopt the same logical notations as one for binary operations
described in Section 2.1. Additionally, we use the symbols ⊤ and ⊥ to
refer to the notions of True and False (respectively corresponding to
the bits ‘1’ and ‘0’), and A→ B to denote the implication A implies B.
Furthermore, the symbol ⊢ (called turnstile) is read as ªinfersº, or ªhas
for logical consequenceº. This notation is often used to give a context
under which a conclusion is true, see Equation (3.1).

context/hypotheses ⊢ conclusion. (3.1)

Using this notation, a theorem is a formula in the form of ⊢ P
(with an empty left-hand side) and is the conclusion of a valid proof.

1 https://softwarefoundations.cis.upenn.edu/

43

https://softwarefoundations.cis.upenn.edu/

44 formal reasoning in a nutshell

For example the judgment A, B, C ⊢ E (read as ªE is true under
assumptions A, B, and Cº) is equivalent to ⊢ (A ∧ B ∧ C)→ E.

In classical logic, the most commonly used system, a proposition is
either True or False. This results in the following very basic theorem:

theorem 3 .1 .1 (tertium non datur). The law of excluded middle
states that for all propositions P, P is either True or Not True:

∀P, P ∨ ¬P.

Similarly, the principle of double negation (Corollary 3.1.2) is easily
derived from the law of excluded middle (Theorem 3.1.1).

corollary 3 .1 .2 (principle of double negation). The princi-
ple of double negations states that for all propositions, if the negation of P is
False, then P is True:

∀P,¬¬P→ P.

3.1.2 Intuitionistic Logic

In 1907, Brouwer [Bro07b; Bro07a] introduced the intuitionistic logic
where the Truth of a statement is only accepted if one has a proof of
the statement.

This idea of exhibiting a proof as an object or giving a method for
the creation of such object is the core of intuitionistic logic. Because of
this particularity, it is also called the constructive logic.

As a result, a proof of:
• A ∧ B is a pair (a, b) where a is proof of A and b is a proof of B.
• A ∨ B is a pair (n, p) where n = 0 and p is a proof A or n = 1

and p is a proof of B.
• A→ B is a function f that converts a proof of A into a proof of

B.
• ⊥ cannot exist.
• ∀x ∈ A, B(x) is a function f that converts any element a of A

into a proof of B(a).
• ∃x ∈ A, B(x) is a pair (a, b) such that a is an element of A and b

is a proof of B(a).
• ¬P seen as P→ ⊥, is a function f that converts a proof of P into

a proof of ⊥.
As a consequence, the intuitionistic view of proofs is closely tied to

functions and types. This was noticed by Curry and Howard [How95]
and is known as the Curry-Howard correspondence.

3.2 coq

The Curry-Howard correspondence [How95] allows us to represent
proofs as term. More precisely, the proof is a typed term where the type

3.3 verifying programs 45

displays the formula that is proven. By type-checking the operations
inside the term, we can ensure the correctness of the proof.

For example, given a predicate ∀n ∈ N, P(n), its proof will be
function f which converts an integer n into a term of type P(n), that is,
a proof of P(n). This function will have the type: f : (n : N)→ P(n).

A proof by induction of ∀n ∈ N, P(n) will require proving P(0), and
to prove P(n + 1) under the assumption that P(n) holds. Therefore,
the body of f will feature a simple match on n and apply the recursion
call in place of the induction hypothesis:

f (n) := match n with

| 0⇒ proof in the case of 0

| n′ + 1⇒ reduction and call to f (n′)

end.

In 1985, Coquand and Huet developed the Calculus of Construc-
tions [CH88], a type theory representing a constructive higher-order
logic following the Curry-Howard correspondence, and which serves
as the base for the Coq theorem prover [Coq]. In this formal proof
management system, a proof is a type-theoretical term that represents
a proof object. To construct proof objects, we use a set of tactics and
the Gallina language to interactively create proofs without exposing
the complexity of the underlying proof terms.

The proving process of Coq is similar to building a proof tree: the
user starts from the bottom and solves the branches and, creates a
proof incrementally. The operation is quite similar to asking ªwhyº
constantly: ªI need to prove B, but I know that A→ B, so now I need
to prove A.º

Additionally, Coq also includes a functional programming language
where one can define data types, and write functions for these data
types, and execute them. It is worth noting that Coq is not Turing-
complete; in particular, all programs written in this formal system
must terminate. For example, writing a recursive function requires the
recursive call to be on a structurally decreasing argument in order to
guarantee termination.

3.3 verifying programs

One of the goals of Formal Verification is to be able to prove that the
execution of a piece of software respects a set of properties. Those
could be safety related, e. g., the software never crashes, or security
related, e. g., the software does not leak secret data, or simply that
the software is correct: the function it performs is as defined in the
specifications.

46 formal reasoning in a nutshell

3.3.1 Floyd-Hoare Logic

In 1967 Floyd [Flo67; Flo93], and subsequently in 1969 Hoare [Hoa69],
developed what is now known as the Floyd±Hoare logic. It is a set of
logical rules used to formally prove properties about pieces of code
and infer their correctness.

Those rules use triples (known as Hoare triple) of the form

{Pre} Prog {Post}
where Pre and Post are predicates and Prog is a fragment of code. The
triple is read as ªif the precondition Pre holds in the initial state, and
we execute Prog, then the postcondition Post will hold in the final
stateº. In the following, we present the rules using an inference bar.

skip rule . Also known as do nothing or empty statement, this
rule asserts that the state of a program does not change during its
execution. Whatever was True before remains True after. It could be
seen as equivalent to an NOP instruction.

Skip
{P} skip {P}

assign rule . This rule states that any predicates that were true for
the right-hand side of the assignment are now true for the left-hand
side.

Assign
{Q[e/x]} x← e {Q}

In the rule x is any variable and e is any expression. The notation
Q[e/x] denotes the result of substituting the term e for all occurrences
of the free variable x in Q. For example:

Assign
{x + 2 = 42} y← x+ 2 {y = 42}

sequence rule . This rule is the foundation of Hoare logic, and is
often used to go through each step of a piece of code.

{P} C1 {Q} {Q} C2 {R}
Sequence

{P} C1 ; C2 {R}
It is read as: ªFor two blocks of code C1 and C2, if {P} C1 {Q} [is True]
and if {Q} C2 {R} [is True], we infer {P} C1 ; C2 {R}." When a proof
tree is built from bottom to top, in order to prove {P} C1 ; C2 {R},
the user will need to give a proposition Q such that {P} C1 {Q} and
{Q} C2 {R}.

consequence rule . Also known as Postcondition and Precondition
weakening, this rule allows us to simplify goals and is often combined
with the Sequence rule.

{P→ P′} {P′} C {Q′} {Q′ → Q}
Consequence

{P} C {Q}

3.3 verifying programs 47

conditional rule . This rule allows us to prove if statements,
and generate a subgoal for each case: the condition where B is true
and the condition where B is false. However, B should only contain a
boolean test and not have side effects, in other cases, it is necessary to
apply the Sequence rule and separate the effect from the check.

{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}
Cond{P} if B then C1 else C2 endif {Q}

while rule . And finally with this rule, we are able to prove the
correctness of loops. For this purpose we use a loop invariant P, i. e.,
a proposition that remains true through the execution of the loop.
Similarly to the conditional rule, B cannot have side effects.

{B ∧ P} C {P}
While{P} while B do C end {¬B ∧ P}

partial and complete correctness . The rules presented here
allows us to prove the correctness of a program under the assumption
that it terminates, such property is called ªpartial correctnessº. In other
words for {P} C {Q}, if P holds in the initial state σi, and we execute
C in state σi, terminating in a state σt, then Q holds in σt. This implies
that {P} C {Q} only says something meaningful in the case that C
terminates.

In order to prove the termination of an algorithm, thus the ªcomplete
correctnessº, it is necessary to include a measure over an additional
expression and prove that its values strictly decrease with respect to a
well-founded relation i. e., there exists a smallest element.

3.3.2 Separation Logic

While the Hoare Logic allows us to reason about most programs, it
will struggle to provide meaning to code using pointers and arrays.
We illustrate this problem with a simple program in C iterating over
two arrays (a, b) and summing their values in an output array c (see
Code 3.1).

1 void A(int* c, int* a, int*b){
2 int i, ai, bi; i = 0;
3 while (i < 16) {
4 ai = a[i];
5 bi = b[i];
6 c[i] = ai + bi;
7 i++;
8 }
9 }

Code 3.1: Simple Addition.

An invariant of this while loop must state that a, b, and c are arrays
representing sequences α, β and γ such that after i iterations, ∀j <
i, γj = αj + β j. Unfortunately this invariant is not strong enough: if

48 formal reasoning in a nutshell

there is sharing between a and c, e. g., the address c is a + 1, the
content of a will be overwritten upon execution of the loop. The final
result will not respect the intended specification. In order to prevent
such problems it would be possible to add additional conditions on
memory addresses but this quickly expands the complexity of the
invariant as the number of variables increases.

To solve this, Reynolds proposed in 2002 separation logic [Rey02]
which complements Hoare logic with an extension. He considers the
store s and the heap h which correspond respectively to the content of
the local variables and to the content of the memory. The precondition
P and postcondition Q of the Hoare triple are thus split into two parts
sP, hP and respectively sQ, hQ.

{sP, hP} Prog {sQ, hQ}
In the following, we provide two illustrations of how the heap and
the store are working together. In this specific case, the heap has been
initialized with two cells of addresses 10 and 11 with respective values
1 and 2. We use fragments of C code to illustrate reading from and
writing to the heap.

{ Store, Heap } x = *(y+1) { Store, Heap }

y = 10 10 11 y = 10 10 11

1 2 x = 2 1 2

{ Store, Heap } *(y+1) = 7 { Store, Heap }

y = 10 10 11 y = 10 10 11

1 2 1 7

In addition to the standard logical proposition in the Hoare triple,
separation logic defines the following:

the constant emp This constant states that the heap is empty. In
other words, for all s and h, we have s, h ⊢ emp when h is undefined
for all addresses.

the binary operator 7→ It defines the heap value at exactly one
location. In other words, it maps a given address to a given value.

the binary operator ∗ Called star or ªseparating conjunctionº,
this operator asserts that the heap can be split into two disjoint parts.
In other words, this connective is used to specify non-aliasing segment
of memory.

Note that as a consequence, {a 7→ α ∗ a 7→ α} is not a valid statement
in separation logic as this would imply that the address a is mapped
to two disjoint segments of the memory.

50 formal reasoning in a nutshell

As highlighted in Figure 3.1, while the compilation chain is certi-
fied, it is worth noting that clightgen Ðwhich is responsible for the
translation from C into the domain-specific language (DSL) ClightÐ is
written in Caml, and thus its correctness is not proven.

verifiable software toolchain. The VST framework [App11;
App+14; Cao+18], developed by Appel et al. at Princeton, uses the
output of clightgen to prove the correctness of a program with respect
to the semantics of CompCert.

The user must first write a formal specification Ða Hoare tripleÐ of
a function to be verified in Coq. At this stage, it is important to make
the difference between a high-level specification and a low-level one.
The first will describe the expected behavior in its simplest form, while
the later will aim to replicate the behavior of the implementation. This
is done by defining a Coq function as close as possible to the execution
steps of the C code, and it results in much simpler verification proof
in VST when working with complex pieces of software.

With the range of inputs defined, the VST starts from the precon-
dition of the triple, it mechanically steps through each instruction,
and asks the user to verify auxiliary goals such as array bound access,
or absence of overflows/underflows. Once done, all that is left to be
proven is the link between the low-level and high-level specification.

3.5 a simple proof of the correctness of a big-number

addition

We prove here the correctness of the 256-bit integer addition function
A as defined in the TweetNaCl cryptographic library (see Code 3.2).
More details of the implementation are given in Section 7.2.3 however
we provide a brief summary as follows.

Numbers of 256-bits are split into 16 16-bits limbs, each limb is
placed in a 64-bit long long signed integer (aliased as i64); conse-
quently, 256-bit numbers are represented as an array of 16 i64. The
result of the 256-bit addition is computed by a simple for loop, apply-
ing the addition to the respective limbs.

1 #define FOR(i,n) for (i = 0;i < n;++i)
2 #define sv static void
3
4 typedef long long i64 __attribute__((aligned(8)));
5 typedef i64 gf[16];
6
7 sv A(gf o,const gf a,const gf b)
8 {
9 int i;

10 FOR(i,16) o[i]=a[i]+b[i];
11 }

Code 3.2: A.c ± Big-number arithmetic addition in TweetNaCl

The high-level view of the proof is illustrated in Figure 3.2. First
we compile the source A.c with clightgen, this produces the Coq file

52 formal reasoning in a nutshell

specifications . Using the VST, we write the following specifica-
tions in Coq for the A function.

Definition A_spec :=
DECLARE _A
WITH v_o: val, v_a: val, v_b: val,

sh : share,
o : list val,
a : list Z,
b : list Z

PRE [_o OF (tptr tlg), _a OF (tptr tlg), _b OF (tptr tlg)]
PROP (writable_share sh;

Forall (λ x 7→ -262 < x < 262) a;

Forall (λ x 7→ -262 < x < 262) b;
Zlength a = 16;
Zlength b = 16;
Zlength o = 16)

LOCAL (temp _a v_a; temp _b v_b; temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b)
POST [tvoid]

PROP ()
LOCAL ()

SEP (sh[{ v_o }]←(lg16)− mVI64 (A a b);

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b).

Code 3.5: Specification of the A function.

In this specification we state preconditions like:
± PRE: _o OF (tptr tlg)

The function A takes as input three pointers to arrays of i64

(tptr tlg) _o, _a and _b.
± LOCAL: temp _o v_o

Each pointer represents an address v_o, v_a and v_b.
± SEP: sh [{ v_a }]←(lg16)− mVI a

In the memory share sh, the address v_a points to a list of 64-bit
integer values mVI64 a.

± PROP: Forall (λ x 7→ -262 < x < 262) a

In order to consider all the possible inputs, we assume each
element of the list a to be strictly bounded by −262 and 262.

± PROP: Zlength a = 16

We also assume that the length of the list a is 16. This defines
the complete representation of i64[16] or gf.

As postcondition we have conditions like:
± POST: tvoid

The function A returns nothing.
± SEP: sh [{ v_o }]←(lg16)− mVI64 (A a b)

In the memory share sh, the address v_o points to a list of 64-bit
integer values mVI64 (A n p) where A is defined as in Code 3.6
and computes recursively the additions between the input limbs
a and b.

3.5 a simple proof of the correctness of a big-num . addition 53

While the PROP section of the post condition is empty, it is also
possible to include additional propositional conditions such as
ªForall (λ x 7→ -2^63 < x < 2^63) (A a b)º.

Fixpoint A (a b : list Z) : list Z := match a,b with
| [], q ⇒ q
| q,[] ⇒ q
| h1::q1,h2::q2 ⇒ (Z.add h1 h2) :: A q1 q2
end.

Code 3.6: Coq definition of A.

Because the A function in C uses a for loop, we also need to define
the following loop invariant (Code 3.7).

Definition A_Inv sh v_o v_a v_b o (a:list Z) (b:list Z) :=
EX i : Z,
PROP ()
LOCAL (temp _a v_a; temp _b v_b; temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− (tkdp i (mVI64 (A a b)) o);

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b).

Code 3.7: Specification of the loop invariant in the A function.

The structure of the invariant is very similar to the specification of a
function except for the EX i : Z, stating that there exists and integer
i (our loop index) such that the proposition is true.

In order to represent the intermediate state of sh [{ v_o }] in the
invariant we define the tkdp function as follows. Given an index i and
two lists a and b, tkdp returns the concatenation of the first i terms of a
and the b list with the first i terms dropped as illustrated in Figure 3.3.

itkdp =
a b

i i i

Figure 3.3: Visual representation of the tkdp function.

stepping through the proof . We now turn our focus towards
the proof that the C code matches our specifications (Code 3.5), this is
formalized in Code 3.8.

Lemma body_A:
(* VST boiler plate. *)
semax_body
(* Global variables used in the code. *)
Vprog
(* Hoare triples for function calls. *)
Gprog
(* Clight AST of the function we verify. *)
f_A
(* Our Hoare triple, see below. *)
A_spec.

Code 3.8: Correctness of the 256-bit addition in TweetNaCl.

54 formal reasoning in a nutshell

We start the interactive proof by using the start_function tactic
from VST. This command initializes the Hoare triple with the pre and
postcondition of our specifications, and with the body of the function.

Proof.
start_function.

As a result we are presented with the VST definition of a Hoare
triple:

semax Delta PRECONDITION CODE POSTCONDITION.

which is equivalent to:

∆ ⊢ {PRECONDITION} A {POSTCONDITION}

where ∆ is the type-context, in other words the association between
variable names and their data types.

In practice the propositional section of the precondition is considered
as a set of hypotheses; as a result the content of PROP is automatically
introduced in the context, this results the following Coq proof state.

1 subgoal
Espec : OracleKind
v_o, v_a, v_b : val
sh : share
o : list val
a, b : list Z
Delta_specs : PTree.t funspec
Delta := abbreviate : tycontext
SH : writable_share sh
H : Forall (λ x : Z 7→ - 2 ^ 62 < x < 2 ^ 62) a
H0 : Forall (λ x : Z 7→ - 2 ^ 62 < x < 2 ^ 62) b
H1 : Zlength a = 16
H2 : Zlength b = 16
H3 : Zlength o = 16
POSTCONDITION := abbreviate : ret_assert
MORE_COMMANDS := abbreviate : statement
______________________________________(1/1)
semax Delta
(PROP ()
LOCAL (temp _a v_a; temp _b v_b; temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b))
(Sfor (_i = (0);)

(_i < (16))%expr
(_t'1 = _a[_i];
_t'2 = _b[_i];
(_o[_i]) = (_t'1 + _t'2);)

(_i = (_i + (1));)
MORE_COMMANDS) POSTCONDITION

Because the VST approach is similar to a step-by-step symbolic
execution, the final postcondition will not be modified through the
proof. As a result, it is hidden in the POSTCONDITION variable. However,
this does not prevent us from taking a peek at it.

rewrite /POSTCONDITION /abbreviate.

3.5 a simple proof of the correctness of a big-num . addition 55

This results in the following goal where we recover the POST section of
the specifications we defined earlier in Code 3.5.

...
______________________________________(1/1)
semax Delta
(PROP ()
LOCAL (temp _a v_a; temp _b v_b; temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b))
(Sfor (_i = (0);)

(_i < (16))%expr
(_t'1 = _a[_i];
_t'2 = _b[_i];
(_o[_i]) = (_t'1 + _t'2);)
(_i = (_i + (1));)

MORE_COMMANDS)
(frame_ret_assert

(function_body_ret_assert tvoid
(PROP ()
LOCAL ()

SEP (sh[{ v_o }]←(lg16)− mVI64 (A a b);

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b)))
(stackframe_of f_A))

From this point we will no longer consider the context part of the
proof state (above the line) as it remains mostly the same through the
steps of the proof.

The first piece of code we are faced with is a Sfor, denoting a for

loop. We step through it by using forward_for_simple_bound with
the loop invariant we previously defined in Code 3.7.

forward_for_simple_bound 16 (A_Inv sh v_o v_a v_b o a b).

This creates 3 subgoals.

1. The first subgoal corresponds to the entailment of the initializa-
tion of the for loop, in other words when i = 0.

______________________________________(1/3)
ENTAIL Delta,
PROP ()
LOCAL (temp _a v_a; temp _b v_b; temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b)
|-- PROP ()

LOCAL (temp _a v_a; temp _b v_b; temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− tkdp 0 (mVI64 (A a b)) o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b)

This first subgoal is equivalent to ∆, P ⊢ Q which is roughly
translated as ªP implies Q in the type-context ∆º. In practice, it is
most often the case of proving that (1) the logical PROP section
in Q is correct with respect to the proof context, and (2) the
separation logic part of P and Q are equivalent.

56 formal reasoning in a nutshell

To help us in this task, the VST provides us with the tactic
entailer! which tries to solve this goal. On failure to do so,
we are presented with subgoals for each unproven proposition
of Q and with the entailment of the separation logic part.

2. The second subgoal corresponds to the Hoare triple of the body
of the loop.

______________________________________(2/3)
semax Delta
(PROP ()
LOCAL (temp _i (Vint (Int.repr i));

temp _a v_a;
temp _b v_b;
temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− tkdp i (mVI64 (A a b)) o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b))
(_t'1 = _a[_i];
MORE_COMMANDS)
POSTCONDITION

3. And finally the last subgoal is the Hoare triple of the code after
the execution of the loop.

______________________________________(3/3)
semax Delta
(PROP ()
LOCAL (temp _i (Vint (Int.repr 16));

temp _a v_a;
temp _b v_b;
temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− tkdp 16 (mVI64 (A a b)) o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b))
(return;)
POSTCONDITION

Having solved the entailment of the for-loop initialization, we now
focus on the loop body (see 2. above). For simple code steps such as
variable assignment, memory load, memory store, and a few others,
the VST provides us with the tactical forward. On more complex ex-
pressions such as if statement, while loops, function calls, etc. we
have to use dedicated tactics specialized in handling such situations.

By using forward, we are applying sequence rule and VST identifies
the assignment with dereference and selects the associated assign

rule.

{P} t1 = a[i] {Q} {Q} MORE_COMMANDS {R}
forward{P} t1 = a[i]; MORE_COMMANDS {R}

This results in 2 new subgoals:
1. the entailment of the assignment (type checking, bound checks)
2. the continuation of the code.

3.5 a simple proof of the correctness of a big-num . addition 57

______________________________________(1/3)
ENTAIL Delta,
PROP ()
LOCAL (temp _i (Vint (Int.repr i));

temp _a v_a;
temp _b v_b;
temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− tkdp i (mVI64 (A a b)) o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b)
|-- (tc_expr Delta (_a)%expr &&

local ❵ (tc_val tlg (Znth i (mVI64 a) Vundef)) &&
denote_tc_assert

(typecheck_efield Delta [eArraySubsc (_i)%expr]))%logic
______________________________________(2/3)
semax Delta
(PROP ()
LOCAL (temp _t'1 (Znth i (mVI64 a) Vundef);

temp _i (Vint (Int.repr i));
temp _a v_a;
temp _b v_b;
temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− tkdp i (mVI64 (A a b)) o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b))
(_t'2 = _b[_i];
MORE_COMMANDS)
POSTCONDITION

We try to solve the first subgoal with the entailer! tactic but we are
left with a type checking condition:

is_long (Znth i (mVI64 a) Vundef)

where Znth is defined as follows:

Znth i (mVI64 a) Vundef =

Vlong a[i], if 0 ≤ i < length(a)

Vundef, otherwise

This is proven by using the fact that 0 ≤ i < 16, thus that there exists
an auxiliary long value at index i in the array a.

By adding in the proof context additional conditions such as:

assert(Haux2: exists aux2, Vlong aux2 = Znth i (mVI64 b) Vundef).

we are able to anticipate the need of the VST tactics and let them
solve intermediate subgoals automatically. As a result, we solve the
subsequent subgoals in similar fashion with a combination of forward
and entailer!.

At this point, Coq asks us to prove that the computation does not
present an overflow; this is solved with simple arithmetic.

Int64.min_signed ≤ (Znth i a 0) + (Znth i b 0) ≤ Int64.max_signed

The next subgoals we are left with is the proof that once the body of
the for loop is executed, we still preserve the invariant. This is done
with the following entailment.

58 formal reasoning in a nutshell

ENTAIL Delta,
PROP ()
LOCAL (temp _t'2 (Vlong (Int64.repr (Znth i b 0)));

temp _t'1 (Vlong (Int64.repr (Znth i a 0)));
temp _i (Vint (Int.repr i));
temp _a v_a;
temp _b v_b;
temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− upd_Znth i (tkdp i (mVI64 (A a b)) o)
(Vlong (Int64.add (Int64.repr (Znth i a 0))

(Int64.repr (Znth i b 0))));

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b)
|-- PROP (0 < i + 1 ≤ 16)

LOCAL (temp _i (Vint (Int.repr i));
temp _a v_a;
temp _b v_b;
temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− tkdp (i + 1) (mVI64 (A a b)) o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b)

Once again, by using entailer! the size of the goal is significantly
reduced, and we are left with a single separation logic expression.

______________________________________(1/2)

sh [{ v_o }]←(lg16)− upd_Znth i
(tkdp i (mVI64 (A a b)) o)
(Vlong (Int64.repr (Znth i a 0 + Znth i b 0)))

|-- sh[{ v_o }]←(lg16)− tkdp (i + 1) (mVI64 (A a b)) o

The fastest approach at this point is to use replace tactic in the goal
with an appropriate choice of variable. As a result, we are left two
subgoals: a trivial expression of type P ⊢ P which is solved by the VST

tactic cancel, and the replace subgoal below.

______________________________________(1/2)
tkdp (i + 1) (mVI64 (A a b)) o =
upd_Znth i (tkdp i (mVI64 (A a b)) o)

(Vlong (Int64.repr (Znth i a 0 + Znth i b 0)))

Such a goal does not depend on any separation logic. From that point
it is good practice to extract such a proof into a separate lemma. This
ensures that the verification proof stays small and focused on stepping
through the function rather exploding in complexity.

Having proven the loop body, we are left with the last Hoare triple
which was introduced by the forward_for_simple_bound tactic.

semax Delta
(PROP ()
LOCAL (temp _i (Vint (Int.repr 16));

temp _a v_a;
temp _b v_b;
temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− tkdp 16 (mVI64 (A a b)) o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b))
(return;)
POSTCONDITION

3.6 from theory to practice 59

As previously, we process the return step with forward and are left
with the final entailment.

((sh[{ v_o }]←(lg16)− tkdp 16 (mVI64 (A a b)) o) *
sh[{ v_a }]←(lg16)− mVI64 a) *

(sh[{ v_b }]←(lg16)− mVI64 b))%logic

|-- ((sh[{ v_o }]←(lg16)− mVI64 (A a b)) *
sh[{ v_a }]←(lg16)− mVI64 a) *
(sh[{ v_b }]←(lg16)− mVI64 b))%logic

Once again, by using the same replace & cancel approach, we solve
the last goal and thus prove the correctness of the addition over 256-bit
numbers.

The script of the full proof without the ellipsis required for readabil-
ity purposes is provided in Section 3.A.

takeaway. At that stage, it is important to notice two things. First
that the proof presented above only considers the case where the func-
tion arguments are non aliased (we tackle this issue in Section 7.4.1).
Secondly that the proof only ensures that the C implementation of
the A function matches its respective definition in Coq. Proving that
the Coq A function does implement an addition over 256-bit number
does not require the use of the VST, as a result we do not cover it here;
however we provide a rough idea of the proof in Chapter 7.

3.6 from theory to practice

In this chapter we briefly reviewed logical notations, intuitionistic
logic and the Coq theorem prover. We then introduced Floyd-Hoare
logic and separation logic and described how they are used in practice
to formally verify pieces of software. We made use of the Verifiable
Software Toolchain in Coq to illustrate how such a proof would be
conducted on a simple function.

A P P E N D I X O F C H A P T E R 3

3.a verification of the correctness of a in tweetnacl

We provide here the complete VST Coq script of the proof presented in
Section 3.5.

Set Warnings "-notation-overridden,-parsing".
Require Import Tweetnacl_verif.init_tweetnacl.
Require Import Tweetnacl.Libs.Export.
Require Import Tweetnacl.ListsOp.Export.
Require Import Tweetnacl.Low.A.

Open Scope Z.

Import Low.

(* Simpler proof of an Entailment for later. *)
Lemma end_inv o a b i :
Zlength a = 16 →
Zlength b = 16 →
Zlength o = 16 →
Zlength (A a b) = 16 →
0 ≤ i < 16 →
tkdp (i + 1) (mVI64 (A a b)) o =
upd_Znth i (tkdp i (mVI64 (A a b)) o)

(Vlong (Int64.repr (Znth i a 0 + Znth i b 0))).
Proof with try reflexivity ; try omega.
intros Ha Hb Ho HA Hi.
rewrite /A in HA.
rewrite ?Znth_nth ...
rewrite -ZsubList_nth_Zlength ...
rewrite /A /tkdp ?simple_S_i ...
rewrite (upd_Znth_app_step_Zlength _ _ _ Vundef) ?Zlength_map ...
f_equal ; rewrite map_map (Znth_map 0) ?Znth_nth ...

Qed.

Definition A_spec :=
DECLARE _A
WITH v_o: val, v_a: val, v_b: val,
sh : share,
o : list val,
a : list Z,
b : list Z

PRE [_o OF (tptr tlg), _a OF (tptr tlg), _b OF (tptr tlg)]
PROP (writable_share sh;

Forall (fun x 7→ -Z.pow 2 62 < x < Z.pow 2 62) a;
Forall (fun x 7→ -Z.pow 2 62 < x < Z.pow 2 62) b;
Zlength a = 16;
Zlength b = 16;
Zlength o = 16)

LOCAL (temp _a v_a; temp _b v_b; temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− o;

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b)
POST [tvoid]

PROP ()
LOCAL()

61

62 formal reasoning in a nutshell

SEP (sh[{ v_o }]←(lg16)− mVI64 (A a b);

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b).

Definition A_Inv sh v_o v_a v_b o (a:list Z) (b:list Z) :=
EX i : Z,
PROP ()
LOCAL (temp _a v_a; temp _b v_b; temp _o v_o)

SEP (sh[{ v_o }]←(lg16)− (tkdp i (mVI64 (A a b)) o);

sh[{ v_a }]←(lg16)− mVI64 a;

sh[{ v_b }]←(lg16)− mVI64 b).

Definition Gprog : funspecs :=
ltac:(with_library prog [A_spec]).

Lemma body_A: semax_body Vprog Gprog f_A A_spec.
Proof.
start_function.
assert(HA: Zlength (A a b) = 16).
rewrite A_Zlength //.

(*
Sfor (_i = (0);)
(_i < (16))%expr
(

_t'1 = _a[_i];
t'2 = _b[_i];
(_o[_i]) = (_t'1 + _t'2);

)
(_i = (_i + (1));

*)
forward_for_simple_bound 16 (A_Inv sh v_o v_a v_b o a b).
(* Initialization of the For loop *)
entailer!.

(* Proof of the body of the For loop *)
assert(Haux1: exists aux1, Vlong aux1 = Znth i (mVI64 a) Vundef).
erewrite (Znth_map Int64.zero);
[eexists ; reflexivity | rewrite Zlength_map; omega].

assert(Haux2: exists aux2, Vlong aux2 = Znth i (mVI64 b) Vundef).
erewrite (Znth_map Int64.zero);
[eexists ; reflexivity | rewrite Zlength_map; omega].

destruct Haux1 as [aux1 Haux1].
destruct Haux2 as [aux2 Haux2].

(* _t'1 = _a[_i]; *)
forward; rewrite -Haux1.
entailer!.

(* _t'2 = _b[_i]; *)
forward; rewrite -Haux2.
entailer!.

(* (_o[_i]) = (_t'1 + _t'2); *)
rewrite map_map (Znth_map 0) in Haux1 ; [| omega].
rewrite map_map (Znth_map 0) in Haux2 ; [| omega].
inversion Haux1 ; clear Haux1; subst aux1.
inversion Haux2 ; clear Haux2; subst aux2.
forward.
entailer!.

(* Proof of correctness of Addition - no overflow *)
clean_context_from_VST.

3.A verification of the correctness of a in tweetnacl 63

assert(-262 < (Znth i a 0) < 2 ^ 62)
by (solve_bounds_by_values_ H).

assert(-262 < (Znth i b 0) < 2 ^ 62)
by (solve_bounds_by_values_ H0).

assert((-262) + (-262) ≤ Znth i a 0 + Znth i b 0 ≤ 262 + 262)
by omega.

rewrite ?Int64.signed_repr ; solve_bounds_by_values.

(* Proof of Entailment of assignment. *)
entailer!.
data_atify; replace_cancel.
apply end_inv 7→ //.

(* Out of the foor loop. Return. *)
(* return; *)
assert(HmA: Zlength (mVI64 (A a b)) = 16)
by rewrite ?Zlength_map //.

assert(Htkdp: tkdp 16 (mVI64 (A a b)) o = mVI64 (A a b)).
rewrite -HmA tkdp_all ?Zlength_map //; omega.

forward ; rewrite Htkdp ; cancel.
Qed.

Close Scope Z.

Part II

D E S I G N I N G , I M P L E M E N T I N G , B R E A K I N G

4G I M L I

This chapter introduces Gimli, a 384-bit permutation designed to
achieve high security with high performance across a broad range of
platforms. After a short introduction (Section 4.1), we present a com-
plete specification of Gimli and its associated schemes (Section 4.2), a
detailed design rationale (Section 4.3), an in-depth security analysis
(Section 4.4), and performance results for a wide range of platforms
(Section 4.5).

4.1 introduction

Keccak [Ber+13a], the 1600-bit permutation inside SHA-3, is well
known to be extremely energy-efficient: specifically, it achieves very
high throughput in moderate-area hardware. Keccak is also well
known to be easy to protect against side-channel attacks: each of its
24 rounds has algebraic degree only 2, allowing low-cost masking.
The reason that Keccak is well known for these features is that most
symmetric primitives are much worse in these metrics.

Chaskey [Mou+14], a 128-bit-permutation-based MAC with a 128-bit
key, is well known to be very fast on 32-bit embedded microcontrollers:
for example, it runs at just 7.0 cycles/byte on an arm Cortex-M3
microcontroller. The reason that Chaskey is well known for this micro-
controller performance is that most symmetric primitives are much worse
in this metric.

Salsa20 [Ber08c], a 512-bit-permutation-based stream cipher, is well
known to be very fast on CPUs with vector units. For example, [BS12]
shows that Salsa20 runs at 5.47 cycles/byte using the 128-bit NEON
vector unit on a classic arm Cortex-A8 (iPad 1, iPhone 4) CPU core.
The reason that Salsa20 and its variant ChaCha20 [Ber08b] are well
known for this performance is again that most symmetric primitives
are much worse in this metric. This is also why ChaCha20 is now
used by smartphones for HTTPS connections to Google [Bur14] and
Cloudflare [Sul15] before being standardized in TLS [Lan+].

Cryptography appears in a wide range of application environments,
and each new environment seems to provide more reasons to be
dissatisfied with most symmetric primitives. For example, Keccak,
Salsa20, and ChaCha20 slow down dramatically when messages are
short. As another example, Chaskey has a limited security level, and
slows down dramatically when the same permutation is used inside a
mode aiming for a higher security level.

67

68 gimli

contribution. We introduce Gimli, a 384-bit permutation. Like
other permutations with sufficiently large state sizes, Gimli can easily
be used to build high-security block ciphers, tweakable block ciphers,
stream ciphers, message-authentication codes, authenticated ciphers,
hash functions, etc.

What distinguishes Gimli from other permutations is its cross-
platform performance. Gimli is designed for energy-efficient hardware
and for side-channel-protected hardware and for microcontrollers and
for compactness and for vectorization and for short messages and for a
high security level.

Additionally, in light of the NIST lightweight cryptography project
(NIST-LWC) [SN15], we propose Gimli-Cipher for authenticated-
encryption with associated data (AEAD), and Gimli-Hash for hashing.

availability of implementations . We place all software and
hardware implementations described in this chapter into the public
domain to maximize reusability of our results. They are available
in the associated materials of this thesis (Section 1.3) and at https:
//gimli.cr.yp.to.

4.2 gimli specification

This section defines Gimli, and subsequently the two constructions
Gimli-Hash and Gimli-Cipher. Our motivations are described in
Section 4.3.

4.2.1 Notation

We denote by W = F
32
2 the set of bit-strings of length 32. We will

refer to the elements of this set as ªwordsº. We index all vectors and
matrices starting at zero. We encode words as bytes in little-endian
form.

4.2.2 The state

The Gimli permutation applies a sequence of rounds to a 384-bit state.
The state is represented as a parallelepiped with dimensions 3× 4× 32
(see Figure 4.1) or, equivalently, as a 3× 4 matrix of 32-bit words.

We name the following sets of bits:
• a column j is a sequence of 96 bits such that
Sj = {s0,j; s1,j; s2,j} ∈ W3

• a row i is a sequence of 128 bits such that
Si = {si,0; si,1; si,2; si,3} ∈ W4

Each round is a sequence of three operations: (1) a non-linear layer,
specifically a 96-bit SP-box applied to each column; (2) in every second

https://gimli.cr.yp.to
https://gimli.cr.yp.to

4.2 gimli specification 69

i

j

Figure 4.1: State Representation.

round, a linear mixing layer; (3) in every fourth round, a constant
addition.

4.2.3 The non-linear layer

The SP-box consists of three sub-operations: rotations of the first and
second words; a 3-input nonlinear T-function; and a swap of the first
and third words. See Figure 4.2 for details.

x

y

z

In parallel:
x ← x ≪ 24
y← y ≪ 9

x

y

z

In parallel:
x ← x⊕ (z≪ 1)⊕ ((y ∧ z)≪ 2)
y← y⊕ x ⊕ ((x ∨ z)≪ 1)
z← z ⊕ y ⊕ ((x ∧ y)≪ 3)

x

y

z

In parallel:
x ← z
z← x

Figure 4.2: The SP-box applied to a column.

4.2.4 The linear layer

The linear layer consists of two swap operations, namely Small-Swap
and Big-Swap. Small-Swap occurs every 4 rounds starting from the 1st
round. Big-Swap occurs every 4 rounds starting from the 3rd round.
See Figure 4.3 for details of these swaps.

70 gimli

Small Swap Big Swap

Figure 4.3: The linear layer.

4.2.5 The round constants

There are 24 rounds in Gimli, numbered 24, 23, . . . , 1. When the round
number r is 24, 20, 16, 12, 8, 4 we xor the round constant 0x9e377900⊕
r to the first state word s0,0.

4.2.6 Putting it together

Algorithm 1 is pseudocode for the full Gimli permutation. Code 4.1
in Section 4.A is a C reference implementation.

Algorithm 1. The Gimli permutation.

Input: S = (si,j) ∈ W3×4

Output: Gimli(S) = (si,j) ∈ W3×4

for r from 24 down to 1 inclusive do
for j from 0 to 3 inclusive do

x ← s0,j ≪ 24 ▷SP-box
y← s1,j ≪ 9
z← s2,j
s2,j ← x⊕ (z≪ 1)⊕ ((y ∧ z)≪ 2)
s1,j ← y⊕ x ⊕ ((x ∨ z)≪ 1)
s0,j ← z⊕ y ⊕ ((x ∧ y)≪ 3)

end for

▷linear layer
if r mod 4 = 0 then

s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 ▷Small-Swap
else if r mod 4 = 2 then

s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 ▷Big-Swap
end if

if r mod 4 = 0 then

s0,0 = s0,0 ⊕ 0x9e377900⊕ r ▷Add constant
end if

end for

return (si,j)

4.2 gimli specification 71

4.2.7 Hashing

Gimli-Hash initializes a 48-byte Gimli state to all-zero before reading
sequentially through a variable-length input as a series of 16-byte
input blocks.

Each full 16-byte input block is handled (absorbed) as follows:
• xor the block into the first 16 bytes of the state (i. e., the top row

of 4 words).
• Apply the Gimli permutation.

The input ends with exactly one final non-full (empty or partial)
block, having b bytes where 0 ≤ b ≤ 15. This final block is handled as
follows:

• xor the block into the first b bytes of the state.
• xor 0x01 into the next byte of the state, position b.
• xor 0x01 into the last byte of the state, position 47.
• Apply the Gimli permutation.

After the input is fully processed, a 32-byte hash output is obtained
as follows:

• Output (squeeze) the first 16 bytes of the state.
• Apply the Gimli permutation.
• Output (squeeze) the first 16 bytes of the state.

Figure 4.4 gives an intuition of the sponge construction used in
Gimli-Hash, additionally a complete description is given in Algo-
rithm 4, and a C implementation is provided in Section 4.B. Note that
we make use of two functions touint32() and tobytes(). The former
converts 4 bytes to a 32-bit unsigned integer in little-endian, while
tobytes() converts a 32-bit unsigned integer to 4 bytes. Further, we
use pad(m) to denote the padding of the message to full blocks.

‘0128’

‘0256’
P

M0

. . . P

Mn∥0x01

0x01

P

T1 T2

Figure 4.4: Gimli-Hash sponge construction (simplified) where P are function
calls to Gimli.

72 gimli

Algorithm 2. The absorb function.

Input: S = (si,j) ∈ W3×4, m ∈ F
8×16
2

Output: absorb(S , m) = (si,j) ∈ W3×4

for i from 0 to 3 inclusive do
s0,i ← s0,i ⊕ touint32(m4i, . . . , m4i+3)

end for

s← Gimli(s)
return s

Algorithm 3. The squeeze function.

Input: S = (si,j) ∈ W3×4

Output: squeeze(S , m) = h ∈ F
8×16
2

h← tobytes(s0,0)∥tobytes(s0,1)∥tobytes(s0,2)∥tobytes(s0,3)
return h

Algorithm 4. The Gimli-Hash function.

Input: M = F
∗
2

Output: Gimli-Hash (M) = h ∈ F
256
2

S ← ‘0384’
m1, . . . , mt ← pad(M)
for i from 0 to t inclusive do

if i = t then
s2,3 ← s2,3 ⊕ 0x01000000

end if

S ← absorb(S , mi)
end for

h← squeeze(S)
S ← Gimli(S)
h← h∥squeeze(S)
return h

4.2.8 Authenticated encryption

After initializing the state to a 16-byte nonce followed by a 32-byte
key and applying the Gimli permutation, Gimli-Cipher processes
the additional data in the same way as Gimli-Hash. The message
is processed in a similar fashion with the exception that after each
absorption of a block, the modified first 16 bytes of the state are
produced as cipher text. Once the last non-full block is processed; the
16-byte authentication tag is generated from the first 16 bytes of the
state.

See Figure 4.5 for an intuition of the duplex mode used in the en-
cryption process of Gimli-Cipher. Algorithm 5 describes an algorithm
for authenticated encryption, and Algorithm 6 for an algorithm for
verified decryption. We also provide a C reference implementations in
Sections 4.C and 4.D

4.2 gimli specification 73

P
N

K
P

A0

. . . P

An∥0x01

0x01

C0

P

M0

. . .

Cn

P

Mn∥0x01

0x01

T

Figure 4.5: Gimli-Cipher duplex construction (encryption, simplified) where
P are function calls to Gimli.

Algorithm 5. The Gimli-Cipher AEAD encryption process.

Input: M = F
∗
2 , A = F

∗
2 , N ∈ F

8×16
2 , K ∈ F

8×32
2

Output: Gimli-Cipher-Encrypt(M, A, N, K) = C ∈ F
∗
2 , T ∈ F

128
2

▷Initialization
S ← ‘0384’
for i from 0 to 3 inclusive do

s0,i ← touint32(N4i∥ . . . ∥N4i+3)
s1,i ← touint32(K4i∥ . . . ∥K4i+3)
s2,i ← touint32(K16+4i∥ . . . ∥K16+4i+3)

end for

S ← Gimli(S)
▷Processing AD

a1, . . . , aq ← pad(A)
for i from 1 to q inclusive do

if i = q then

s2,3 ← s2,3 ⊕ 0x01000000

end if

S ← absorb(S , ai)
end for

▷Processing Plaintext
m1, . . . , mt ← pad(M)
for i from 1 to t inclusive do

ki ← squeeze(S)
ci ← ki ⊕mi
if i = t then

s2,3 ← s2,3 ⊕ 0x01000000

end if

S ← absorb(S , ai)
end for

C ← c1∥ . . . ∥ct
▷Generating Tag

T ← squeeze(s)
return C, T

74 gimli

Algorithm 6. The Gimli-Cipher AEAD decryption process.

Input: C = F
∗
2 , T ∈ F

128
2 , A = F

∗
2 , N ∈ F

8×16
2 , K ∈ F

8×32
2

Output: Gimli-Cipher-Decrypt(C, T, A, N, K) = M ∈ F
∗
2

▷Initialization
S ← ‘0384’
for i from 0 to 3 inclusive do

s0,i ← touint32(N4i∥ . . . ∥N4i+3)
s1,i ← touint32(K4i∥ . . . ∥K4i+3)
s2,i ← touint32(K16+4i∥ . . . ∥K16+4i+3)

end for

s← Gimli(s)
▷Processing AD

a1, . . . , aq ← pad(A)
for i from 1 to q inclusive do

if i = q then

s2,3 ← s2,3 ⊕ 0x01000000

end if

S ← absorb(S , ai)
end for

▷Processing Ciphertext
c1, . . . , ct ← pad(C)
for i from 1 to t inclusive do

ki ← squeeze(S)
mi ← ki ⊕ ci
if i = t then

s2,3 ← s2,3 ⊕ 0x01000000

end if

S ← absorb(S , mi)
end for

M← m1∥ . . . ∥mt
▷Verifying Tag

T′ ← squeeze(s)
if T′ = T then

return M
else

return ⊥
end if

Note that the authenticated cipher and the hash function use the
same Gimli permutation and a very similar approach to process data.
As a result, on a device providing authenticated encryption, verified
decryption, and hashing, the hardware area for this permutation (in-
cluding computations and storage) is entirely shared. Similar comment
applies to a software implementation.

4.3 understanding the gimli design 75

4.3 understanding the gimli design

This section explains how we arrived at the Gimli design presented in
Section 4.2.

We started from the well-known goal of designing one unified cryp-
tographic primitive suitable for many different applications: collision-
resistant hashing, preimage-resistant hashing, message authentication,
message encryption, etc. We found no reason to question the ªnew
conventional wisdomº that a permutation is a better unified prim-
itive than a block cipher. Like Keccak, Ascon [Dob+16b], etc., we
evaluate performance only in the forward direction, and we consider
only forward modes; modes that also use the inverse permutation
require extra hardware area and do not seem to offer any noticeable
advantages.

Where Gimli departs from previous designs is in its objective of
being a single primitive that performs well on every common platform.
We do not insist on beating all previous primitives on all platforms
simultaneously, but we do insist on coming reasonably close. Each
platform has its own hazards that create poor performance for many
primitives; what Gimli shows is that all of these hazards can be
avoided simultaneously.

4.3.1 Vectorization

On common Intel server CPUs, vector instructions are by far the most
efficient arithmetic/logic instructions. As a concrete example, the 12-
round ChaCha12 stream cipher has run at practically the same speed
as 12-round AES-192 on several generations of Intel CPUs (e. g., 1.7
cycles/byte on Westmere; 1.5 cycles/byte on Ivy Bridge; 0.8 cycles/byte
on Skylake), despite AES hardware support, because ChaCha12 takes
advantage of the vector hardware on the same CPUs. Vectorization
is attractive for CPU designers because the overhead of fetching and
decoding an instruction is amortized across several data items.

Any permutation built from (e. g.,) common 32-bit operations can
take advantage of a 32b-bit vector unit if the permutation is applied
to b blocks in parallel. Many modes of use of a permutation support
this type of vectorization. But this type of vectorization creates two
performance problems. First, if b parallel blocks do not fit into vector
registers, then there is significant overhead for loads and stores; vec-
torized Keccak implementations suffer exactly this problem. Second,
a large b is wasted in applications where messages are short.

Gimli, like Salsa and ChaCha, views its state as consisting of 128-
bit rows that naturally fit into 128-bit vector registers. Each row consists
of a vector of 128/w entries, each entry being a w-bit word, where
w is optimized below. Most of the Gimli operations are applied to
every column in parallel, so the operations naturally vectorize. Taking

76 gimli

advantage of 256-bit or 512-bit vector registers requires handling only
2 or 4 blocks in parallel.

4.3.2 Logic operations and shifts

Gimli’s design uses only bitwise operations on w-bit words: specifi-
cally, and, or, xor, constant-distance left shifts, and constant-distance
rotations.

There are tremendous hardware-latency advantages to being able
to carry out w bit operations in parallel. Even when latency is not
a concern, bitwise operations are much more energy-efficient than
integer addition, which (when carried out serially) uses almost 5w
bit operations for w-bit words. Avoiding additions also allows ªinter-
leavedº implementations as in Keccak, Ascon, etc., saving time on
software platforms with word sizes below w.

On platforms with w-bit words there is a software cost in avoid-
ing additions. One way to quantify this cost is as follows. A typical
ARX design is roughly balanced between addition, rotation, and xor.
NORX [AJN14b] replaces each addition a + b with a similar bitwise
operation a⊕ b⊕ ((a ∧ b) ≪ 1), so 3 instructions (add, rotate, xor)
are replaced with 6 instructions; on platforms with free shifts and
rotations (such as the arm Cortex-M4), 2 instructions are replaced
with 4 instructions; on platforms where rotations need to be simulated
by shifts (as in typical vector units), 5 instructions are replaced with
8 instructions. On top of this near-doubling in cost, the diffusion in
the NORX operation is slightly slower than the diffusion in addition,
increasing the number of rounds required for security.

The pattern of Gimli operations improves upon NORX in three
ways. First, Gimli uses a third input c for a⊕ b⊕ ((c ∧ b) ≪ 1), re-
moving the need for a separate xor operation. Second, Gimli uses
only two rotations for three of these operations; overall Gimli uses
19 instructions on typical vector units, not far behind the 15 instruc-
tions used by three ARX operations. Third, Gimli varies the 1-bit shift
distance, improving diffusion compared to NORX and possibly even
compared to ARX.

We searched through many combinations of possible shift distances
(and rotation distances) in Gimli, applying a simple security model
to each combination. Large shift distances throw away many nonlin-
ear bits and, unsurprisingly, turned out to be suboptimal. The final
Gimli shift distances (2, 1, 3 on three 32-bit words) keep 93.75% of the
nonlinear bits.

4.3.3 32-bit words

Taking w = 32 is an obvious choice for 32-bit CPUs. It also works well
on common 64-bit CPUs, since those CPUs have fast instructions for,

4.3 understanding the gimli design 77

e. g., vectorized 32-bit shifts. The 32-bit words can also be split into
16-bit words (with top and bottom bits, or more efficiently with odd
and even bits as in ªinterleavedº Keccak software), and further into
8-bit words.

Taking w = 16 or w = 8 would lose speed on 32-bit CPUs that do not
have vectorized 16-bit or 8-bit shifts. Taking w = 64 would interfere
with Gimli’s ability to work within a quarter-state for some time (see
below), and we do not see a compensating advantage.

4.3.4 State size

On common 32-bit arm microcontrollers, there are 14 easily usable
integer registers, for a total of 448 bits. The 512-bit states in Salsa20,
ChaCha, NORX, etc. produce significant load-store overhead, which
Gimli avoids by (1) limiting its state to 384 bits (three 128-bit vectors),
i. e., 12 registers, and (2) fitting temporary variables into just 2 registers.

Limiting the state to 256 bits would provide some benefit in hard-
ware area, but would produce considerable slowdowns across plat-
forms to maintain an acceptable level of security. For example, 256-bit
sponge-based hashing at a 2100 security level would be able to absorb
only 56 message bits (22% of the state) per permutation call, while 384-
bit sponge-based hashing at the same security level is able to absorb
184 message bits (48% of the state) per permutation call, presumably
gaining more than a factor of 2 in speed, even without accounting for
the diffusion benefits of a larger state. It is also not clear whether a
256-bit state size leaves an adequate long-term security margin against
multi-user attacks (see [FJM14]) and quantum attacks; more compli-
cated modes can achieve high security levels using small states, but
this damages efficiency.

One of the SHA-3 requirements was 2512 preimage security. For
sponge-based hashing this requires at least a 1024-bit permutation,
or an even larger permutation for efficiency, such as Keccak’s 1600-
bit permutation. This requirement was based entirely on matching
SHA-512, not on any credible assertion that 2512 preimage security will
ever have any real-world value. Gimli is designed for useful security
levels, so it is much more comparable to, e. g., 512-bit Salsa20, 400-bit
Keccak-p[400, nr] (which reduces Keccak’s 64-bit lanes to 16-bit lanes),
384-bit C-Quark [AKM12], 384-bit Spongent-256/256/128 [Bog+11],
320-bit Ascon, and 288-bit Photon-256/32/32 [GPP11].

4.3.5 Working locally

On the popular low-end arm Cortex-M0 microcontroller, many in-
structions can access only 8 of the 14 32-bit registers. Working with
more than 256 bits at a time incurs overhead to move data around.
Similar comments apply to the 8-bit AVR microcontroller.

78 gimli

Gimli performs many operations on the left half of its state, and
separately performs many operations on the right half of its state. Each
half fits into 6 32-bit registers, plus 2 temporary registers.

It is of course necessary for these 192-bit halves to communicate,
but this communication does not need to be frequent. The only com-
munication is Big-Swap, which happens only once every 4 rounds, so
we can work on the same half-state for several rounds.

At a smaller scale, Gimli performs a considerable number of oper-
ations within each column (i. e., each 96-bit quarter-state) before the
columns communicate. Communication among columns happens only
once every 2 rounds. This locality is intended to reduce wire lengths
in unrolled hardware, allowing faster clocks.

4.3.6 Parallelization

Like Keccak and Ascon, Gimli has degree just 2 in each round.
This means that, during an update of the entire state, all nonlinear
operations are carried out in parallel: a nonlinear operation never feeds
into another nonlinear operation.

This feature is often advertised as simplifying and accelerating
masked implementations. The parallelism also has important perfor-
mance benefits even if side channels are not a concern.

Consider, for example, software using 128-bit vector instructions
to apply Salsa20 to a single 512-bit block. Salsa20 chains its 128-bit
vector operations: an addition feeds into a rotation, which feeds into
an xor, which feeds into the next addition, etc. The only parallelism
possible here is between the two shifts inside a shift-shift-or implemen-
tation of the rotation. A typical vector unit allows more instructions to
be carried out in parallel, but Salsa20 is unable to take advantage of
this. Similar comments apply to BLAKE [Aum+14] and ChaCha20.

The basic NORX operation a ⊕ b ⊕ ((a ∧ b) ≪ 1) is only slightly
better, depth 3 for 4 instructions. Gimli has much more internal par-
allelism: on average approximately 4 instructions are ready at each
moment.

Parallel operations provide slightly slower forward diffusion than
serial operations, but experience shows that this costs only a few
rounds. Gimli has very fast backward diffusion.

4.3.7 Compactness

Gimli is intentionally very simple, repeating a small number of op-
erations again and again. This gives implementors the flexibility to
create very small ªrolledº designs, using very little area in hardware
and very little code in software; or to unroll for higher throughput.

This simplicity creates three directions of symmetries that need to
be broken. Gimli is like Keccak in that it breaks all symmetries within

4.3 understanding the gimli design 79

the permutation, rather than (as in Salsa, ChaCha, etc.) relying on
attention from the mode designer to break symmetries. Gimli puts
more effort than Keccak into reducing the total cost of asymmetric
operations.

The first symmetry is that rotating each input word by any constant
number of bits produces a near-rotation of each output word by the
same number of bits; ªnearº accounts for a few bits lost from shifts.
Occasionally (after rounds 24, 20, 16, etc.) Gimli adds an asymmetric
constant to entry 0 of the first row. This constant has many bits set
(it is essentially the golden ratio 0x9e3779b9, as used in TEA), and is
not close to any of its nontrivial rotations (never fewer than 12 bits
different), so a trail applying this symmetry would have to cancel
many bits.

The second symmetry is that each round is identical, potentially
allowing slide attacks. This is much more of an issue for small blocks
(as in, e. g., 128-bit block ciphers) than for large blocks (such as Gimli’s
384-bit block), but Gimli nevertheless incorporates the round num-
ber r into the constant mentioned above. Specifically, the constant is
0x93e77900⊕ r. The implementor can also use 0x93e77900+ r since
r fits into a byte, or can have r count from 0x93e77918 down to
0x93e77900.

The third symmetry is that permuting the four input columns means
permuting the four output columns; this is a direct effect of vectoriza-
tion. Occasionally (after rounds 24, 20, 16, etc.) Gimli swaps entries
0, 1 in the first row, and swaps entries 2, 3 in the first row, reducing
the symmetry group to 8 permutations (exchanging or preserving
0, 1, exchanging or preserving 2, 3, and exchanging or preserving the
halves). Occasionally (after rounds 22, 18, 14, etc.) Gimli swaps the
two halves of the first row, reducing the symmetry group to 4 permu-
tations (0123, 1032, 2301, 3210). The same constant distinguishes these
4 permutations.

We also explored linear layers slightly more expensive than these
swaps. We carried out fairly detailed security evaluations of Gimli-
MDS (replacing a, b, c, d with s ⊕ a, s ⊕ b, s ⊕ c, s ⊕ d where s = a ⊕
b⊕ c⊕ d), Gimli-SPARX (as in [Din+16a]), and Gimli-Shuffle (with
the swaps as above). We found some advantages in Gimli-MDS and
Gimli-SPARX in proving security against various types of attacks, but
it is not clear that these advantages outweigh the costs, so we opted
for Gimli-Shuffle as the final Gimli.

4.3.8 Inside the SP-box: choice of words and rotation distances

The bottom bit of the T-function adds y to z and then adds x to y. We
could instead add x to y and then add the new y to z, but this would
be contrary to our goal of parallelism; see above.

After the T-function we exchange the roles of x and z, so that the
next SP-box provides diffusion in the opposite direction. The shifted

80 gimli

parts of the T-function already provide diffusion in both directions,
but this diffusion is not quite as fast, since the shifts throw away some
bits.

We originally described rotations as taking place after the T-function,
but this is equivalent to rotation taking place before the T-function
(except for a rotation of the input and output of the entire permutation).
Starting with rotation saves some instructions outside the main loop
on platforms with rotated-input instructions; also, some applications
reuse portions of inputs across multiple permutation calls, and can
cache rotations of those portions. These are minor advantages but
there do not seem to be any disadvantages.

Rotating all three of x, y, z adds noticeable software cost and is
almost equivalent to rotating only two: it merely affects which bits
are discarded by shifts. So, as mentioned above, we rotate only two.
In a preliminary Gimli design we rotated y and z, but we found that
rotating x and y improves security by 1 round against our best integral
attacks; see below.

This leaves two choices: the rotation distance for x and the rotation
distance for y. We found very little security difference between, e. g.,
(24, 9) and (26, 9), while there is a noticeable speed difference on
various software platforms. We decided against ªalignedº options
such as (24, 8) and (16, 8), although it seems possible that any security
difference would be outweighed by further speedups.

4.3.9 Bijectivity of Gimli

The bijectivity of the SP-box is not easy to see. If we exclude the
swapping and the rotations (which are trivially bijective), we can
unroll SP over the first bits:

f0 =

x′0 ← x0

y′0 ← y0 ⊕ x0

z′0 ← z0 ⊕ y0

f1 =

x′1 ← x1 ⊕ z0

y′1 ← y1 ⊕ x1 ⊕ (x0 ∨ z0)

z′1 ← z1 ⊕ y1

f2 =

x′2 ← x2 ⊕ z1 ⊕ (y0 ∧ z0)

y′2 ← y2 ⊕ x2 ⊕ (x1 ∨ z1)

z′2 ← z2 ⊕ y2

4.3 understanding the gimli design 81

and

fn =

x′n ← xn ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)

y′n ← yn ⊕ xn ⊕ (xn−1 ∨ zn−1)

z′n ← zn ⊕ yn ⊕ (xn−3 ∧ zn−3)

Thus:

f−1
0 =

x0 ← x′0

y0 ← y′0 ⊕ x′0

z0 ← z′0 ⊕ y′0 ⊕ x′0

f−1
1 =

x1 ← x′1 ⊕ z0

y1 ← y′1 ⊕ x′1 ⊕ z0 ⊕ (x0 ∨ z0)

z1 ← z′1 ⊕ y′1 ⊕ x′1 ⊕ z0 ⊕ (x0 ∨ z0)

f−1
2 =

x2 ← x′2 ⊕ z1 ⊕ (y0 ∧ z0)

y2 ← y′2 ⊕ x′2 ⊕ z1 ⊕ (y0 ∧ z0)⊕ (x1 ∨ z1)

z2 ← z′2 ⊕ y′2 ⊕ x′2 ⊕ z1 ⊕ (y0 ∧ z0)⊕ (x1 ∨ z1)

and

f−1
n =

xn ← x′n ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)

yn ← y′n⊕xn ⊕ (xn−1 ∨ zn−1)

zn ← z′n⊕yn ⊕ (xn−3 ∧ zn−3)

SP−1 is fully defined by recurrence. SP is therefore bijective.

4.3.10 Application to hashing

Gimli-Hash uses the well-known sponge mode [Ber+11a; Ber+08a],
the simplest way to hash using a permutation. A generic sponge with
a 16-byte rate and a 32-byte capacity has 2128 security against a broad
class of attacks.

By default, Gimli-Hash provides a fixed-length output of 32 bytes
(the concatenation of two 16-byte blocks). However, Gimli-Hash can
be used as an eXtendable Output Function (XOF); for example to
generate n bytes of output,

• concatenate ⌈n/16⌉ blocks of 16 bytes, where each block is ob-
tained by extracting the first 16 bytes of the state and then
applying the Gimli permutation, and then

• truncate the resulting 16⌈n/16⌉ bytes to n bytes.

82 gimli

Note that Gimli-Hash applies the Gimli permutation with one
empty input block, if the input length is a multiple of 16. The seemingly
obvious alternative would be to have a 3-way fork after each block,
e.g.:

• xor 0x00 into the capacity part after each non-final block,
• xor 0x01 into the capacity part after a full final block (i. e., if the

size of the final block is exactly 16 bytes), and
• xor 0x02 into the capacity part after each partial final block (with

an extra 0x01 at the end of the block).
This three-way fork saves one call of the permutation if the message
length is a multiple of 16. However, the 2-way fork that we use has a
performance benefit for lightweight applications.

Imagine a tiny device reading one byte (or even one bit) at a time,
and at some point having the read instead say ªend of dataº. With the
2-way fork, the device can handle each byte as follows:

• xor the byte into the state at the current position,
• increase the current position, and
• if the current position would exceed the end of the block, apply

the permutation and set the current position back to the first
byte.

Whenever the device receives an ªend of dataº, it can immediately xor

0x01 into the state at the current position and apply the permutation.
With a 3-way fork, the device instead must delay calling the per-

mutation at the end of each block until it knows whether the data is
finished or not. If another byte arrives, the device must buffer that
byte, perform the permutation, and then xor that byte into the block.
This complicates the handling of every block.

We conclude that the two-way fork in Gimli-Hash is better suited
for lightweight cryptosystems than the three-way fork, even though
the three-way fork does save one application of the Gimli permutation
for 1/16 of all message lengths.

4.3.11 Application to Authenticated Encryption

Gimli-Cipher uses the well-known duplex mode [Ber+11b], the sim-
plest way to encrypt using a permutation. Duplexing reads an input
the same way as sponge hashing: each 16-byte message block m is
xored into the first block x of the state, changing this block of the state
to m⊕ x. Duplexing also outputs m⊕ x as a block of ciphertext.

We opted for a 256-bit key. This does not mean that we endorse the
pursuit of (e. g.,) a 2224 security level; it means that we want to reduce
concerns about multi-target attacks, quantum attacks, etc.

NIST has recommended that 256-bit keys be accompanied by a 2224

single-key pre-quantum security level. We have considered various
ways to accommodate this recommendation. For example, one can add
16 of the key bytes (which can be shared with the existing key bytes,
as in single-key Even±Mansour) into each 16-byte ciphertext block.

4.4 security analysis 83

However, this requires the state storing the key to be accessed for each
block, rather than just at the beginning of processing a message. In
the absence of any explanation of any real-world relevance of security
levels above 2128, we have opted to avoid this complication.

We have also considered a mode called ªBeetleº, which is argued
in [Cha+18] to achieve quantitatively higher security than duplexing.
Beetle uses the key only at the beginning, and it involves only slightly
more computation than duplexing:

• View the plaintext block as two halves: (m0, m1).
• View the first state block as (x0, x1).
• Output the ciphertext block (m0 ⊕ x0, m1 ⊕ x1), as in duplexing.
• Replace the first state block with (m0 ⊕ x1, m1 ⊕ x1 ⊕ x0).

However, in environments that communicate (say) 1 bit at a time,
it is not clear how to fit the Beetle mode into as little space as the
duplex mode. The duplex mode allows each plaintext bit to be read,
added into the state, output as a ciphertext bit with no further latency,
and then forgotten, with a small (7-bit) counter keeping track of the
position inside the block.

4.4 security analysis

4.4.1 Diffusion

As a first step in understanding the security of reduced-round Gimli,
we consider the following two minimum security requirements:

• the number of rounds required to show the avalanche effect for
each bit of the state;

• the number of rounds required to reach a state full of ‘1’ starting
from a state where only one bit is set. In this experiment we
replace every xor and every and by or.

Given the input size of the SP-box, we verify the first criterion with
the Monte-Carlo method. We generate random states and flip each bit
once. We can then count the number of bits flipped after a defined
number of rounds. Experiments show that 10 rounds are required for
each bit to change on the average half of the state (see Table 4.12 in
Section 4.I).

As for the second criterion, we replace the T-function in the SP-box
by the following operations:

x′ ← x ∨ (z≪ 1) ∨ ((y ∨ z)≪ 2)

y′ ← y ∨ x ∨ ((x ∨ z)≪ 1)

z′ ← z ∨ y ∨ ((x ∨ y)≪ 3)

By testing the 384 bit positions, we prove that a maximum of 8 rounds
are required to fill up the state.

84 gimli

4.4.2 Differential Cryptanalysis

To study Gimli’s resistance against differential cryptanalysis we use
the same method as has been used for NORX [AJN14a] and Si-
mon [KLT15] by using a tool-assisted approach to find the optimal
differential trails for a reduced number of rounds. In order to enable
this approach we first need to define the valid transitions of differences
through the Gimli round function.

The non-linear part of the round function shares similarities with
the NORX round function, but we need to take into account the
dependencies between the three lanes to get a correct description of
the differential behavior of Gimli. In order to simplify the description
we will look at the following function which only covers the non-linear
part of Gimli:

x′ ← y ∧ z

f (x, y, z) : y′ ← x ∨ z

z′ ← x ∧ y

(4.1)

where x, y, z ∈ W . For the Gimli SP-box we only have to apply some
additional linear functions which behave deterministically with re-
spect to the propagation of differences. In the following we denote
(∆x, ∆y, ∆z) as the input difference and (∆x′ , ∆y′ , ∆z′) as the output
difference.

lemma 4 .4 .1 (differential probability). For each possible dif-
ferential through f it holds that

∆x′ ∧ ¬(∆y ∨ ∆z) = 0

∆y′ ∧ ¬(∆x ∨ ∆z) = 0

∆z′ ∧ ¬(∆x ∨ ∆y) = 0

(∆x ∧ ∆y ∧ ¬∆z) ∧ ¬(∆x′ ⊕ ∆y′) = 0

(∆x ∧ ¬∆y ∧ ∆z) ∧ (∆x′ ⊕ ∆z′) = 0

(¬∆x ∧ ∆y ∧ ∆z) ∧ ¬(∆y′ ⊕ ∆z′) = 0

(∆x ∧ ∆y ∧ ∆z) ∧ ¬(∆x′ ⊕ ∆y′ ⊕ ∆z′) = 0.

(4.2)

The differential probability of ((∆x, ∆y, ∆z)⇒ (∆x′ , ∆y′ , ∆z′)) is given by

DP((∆x, ∆y, ∆z)⇒ (∆x′ , ∆y′ , ∆z′)) = 2−2·hw(∆x∨∆y∨∆z). (4.3)

Proof of Lemma 4.4.1. We want to show how to compute the set of valid
differentials for a given input difference

{(∆x′ , ∆y′ , ∆z′) :

f (x, y, z)⊕ f (x⊕ ∆x, y⊕ ∆y, z⊕ ∆z) = (∆x′ , ∆y′ , ∆z′)}.
(4.4)

4.4 security analysis 85

It is sufficient to look at the case where W is F2 as there is no
interaction between different coordinates in f . The output differences
for f are given by

∆x′ = (y ∧ z)⊕ (y⊕ ∆y ∧ z⊕ ∆z)

∆y′ = (x ∨ z)⊕ (x⊕ ∆x ∨ z⊕ ∆z)

∆z′ = (x ∧ y)⊕ (x⊕ ∆x ∧ y⊕ ∆y).

(4.5)

If the input difference (∆x, ∆y, ∆z) = (0, 0, 0), then the output dif-
ference is clearly (0, 0, 0) as well. We can split the remaining cases in
three groups.

case (∆x , ∆y , ∆z) = (1, 0, 0) .
This simplifies Equation 4.5 to

∆x′ = (y ∧ z)⊕ (y ∧ z) = 0

∆y′ = (x ∨ z)⊕ (¬x ∨ z) = −z

∆z′ = (x ∧ y)⊕ (¬x ∧ y) = y,

(4.6)

and gives us the set of possible output differences

(∆x′ , ∆y′ , ∆z′) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}. (4.7)

Similarly, we can find the differentials for the other cases with a single
bit difference which gives us the first three conditions in Lemma 4.4.1.

case (∆x , ∆y , ∆z) = (1, 1, 0) .
This simplifies Equation 4.5 to

∆x′ = (y ∧ z)⊕ (¬y ∧ z) = z

∆y′ = (x ∨ z)⊕ (¬x ∨ z) = −z

∆z′ = (x ∧ y)⊕ (¬x ∧ ¬y) = ¬(x⊕ y),

(4.8)

giving the set of possible output differences

(∆x′ , ∆y′ , ∆z′) ∈ {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}. (4.9)

Again we can derive the other two cases in a similar way, giving us
conditions 4-6 in Lemma 4.4.1.

case (∆x , ∆y , ∆z) = (1, 1, 1) .
This simplifies Equation 4.5 to

∆x′ = (y ∧ z)⊕ (¬y ∧ ¬z) = ¬(y⊕ z)

∆y′ = (x ∨ z)⊕ (¬x ∨ ¬z) = ¬(x⊕ y)

∆z′ = (x ∧ y)⊕ (¬x ∧ ¬y) = ¬(x⊕ y),

(4.10)

giving the set of possible output differences

(∆x′ , ∆y′ , ∆z′) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. (4.11)

86 gimli

This corresponds to the last condition in Lemma 4.4.1.
As in all but the (0, 0, 0) cases, the size of the set of possible output

differences is 4 the probability of any differential transition is 2−2.

We can then use the conditions of Lemma 4.4.1 together with the
linear transformations to describe how differences propagate through
the Gimli round functions. For computing the differential probability
over multiple rounds we assume that the rounds are independent.
Using this model we then search for the optimal differential trails with
the SAT/SMT-based approach [AJN14a; KLT15].

We are able to find the optimal differential trails up to 8 rounds of
Gimli (see Table 4.1). After more rounds this approach failed to find
any solution in a reasonable amount of time. The 8-round differential
trail is given in Table 4.3.

Table 4.1: The optimal differential trails for a reduced number of rounds of
Gimli.

Rounds 1 2 3 4 5 6 7 8

Weight 0 0 2 6 12 22 36 52

In order to cover more rounds of Gimli we restrict our search to
a good starting difference and expand it in both directions. As the
probability of a differential trail quickly decreases with the Hamming
weight of the state, it is likely that any high probability trail will
contain some rounds with very low Hamming weight. In Table 4.2, we
show the results when starting from a single bit difference in any of
the words. Interestingly, the best trails match the optimal differential
trails up to 8 rounds given in Table 4.1.

Table 4.2: The optimal differential trails when expanding from a single bit
difference in any of the words.

Rounds 1 2 3 4 5 6 7 8 9

r = 0 0 2 6 14 28 58 102

r = 1 0 0 2 6 12 26 48 88

r = 2 - 0 2 6 12 22 36 66 110

r = 3 - - 8 10 14 32 36 52 74

r = 4 - - - 26 28 32 38 52 74

Using the optimal differential for 7 rounds we can construct a 12-
round differential trail with probability 2−188 (see Table 4.4 in ??).
If we look at the corresponding differential, this means we do not
care about any intermediate differences; many trails might contribute
to the probability. In the case of our 12-round trail we find 15800
trails with probability 2−188 and 20933 trails with probability 2−190

4.4 security analysis 87

contributing to the differential. Therefore, we estimate the probability
of the differential to be ≈ 2−173.63.

Table 4.3: Optimal differential trail for 8-round Gimli.

Round s∗,0 s∗,1 s∗,2 s∗,3 Weight

0

0x80404180 0x00020100 - -
180x80002080 - - -

0x80002080 0x80010080 - -

1

0x80800100 - - -
80x80400000 - - -

0x80400080 - - -

2

0x80000000 - - -
00x80000000 - - -

0x80000000 - - -

3

- - - -
0- - - -

0x80000000 - - -

4

0x00800000 - - -
2- - - -

- - - -

5

- - - -
40x00000001 - - -

0x00800000 - - -

6

0x01008000 - - -
60x00000200 - - -

0x01000000 - - -

7

- - - -
140x01040002 - - -

0x03008000 - - -

8

0x02020480 - - -
-0x0a00040e - 0x06000c00 -

0x06010000 - 0x00010002 -

88 gimli

Table 4.4: A 12-round differential trail for Gimli with probability 2−188 expand-
ing the optimal 7-round differential trail.

Round s∗,0 s∗,1 s∗,2 s∗,3 Weight

0
0x04010100 0x80010380 0x06010100 0x80100C00

46- 0x40010180 0x02000000 0x40100400

0x02008080 0x40010180 0x03018080 0x40104400

1
- 0x80020080 - 0x80210180

24- 0x00060080 - 0x40200080

- 0x00070480 - 0x00318400

2
- 0x00003100 - 0x80401180

20- 0x00000100 - 0x80000180

- 0x80000980 - 0x80000980

3
- - - 0x80800100

8- - - 0x80400000

- - - 0x80400080

4
- - - 0x80000000

0- - - 0x80000000

- - - 0x80000000

5
- - - -

0- - - -
- - - 0x80000000

6
- - - 0x00800000

2- - - -
- - - -

7
- - - -

4- - - 0x00000001

- - - 0x00800000

8
- - - 0x01008000

6- - - 0x00000200

- - - 0x01000000

9
- - 0x00010002 -

14- - - 0x01040002

- - - 0x03008000

10
- - - 0x020A0480

24- - 0x02000400 0x0A000402

- - 0x00010002 0x0A010000

11
0x02020104 0x02000100 - -

40- - 0x00080004 0x14010430

- - 0x00020004 0x1E081480

12
- - 0x00000A00 0xB00A0910

-0x04020804 0x00020004 0x10001800 0x02186078

0x02020104 0x02000100 0x00040008 0x3C102900

4.4 security analysis 89

4.4.3 Algebraic Degree and Integral Attacks

Since the algebraic degree of the round function of Gimli is only 2, it
is important to check how the degree increases by iterating the round
function. We use the (bit-based) division property [Tod15; TM16] to
evaluate the algebraic degree, and the propagation search is assisted
by mixed integer linear programming (MILP) [Xia+16].

The division property is normally used to search for integral dis-
tinguishers. Evaluation of the algebraic degree, which we use in this
chapter, is kind of a reverse use of the division property. Assume that
the MILP model M in which the propagation rules of the division
property for Gimli are described, and x⃗ and y⃗ denote MILP variables
corresponding to input and output of Gimli, respectively. In the nor-
mal use of the division property, x⃗ has a specific value. To be precise,
xi = 1 when the ith bit of the input is active, and xi = 0 otherwise.
Then, we check the feasibility that y⃗ = e⃗j, where e⃗j is 384-dimensional
unit vector whose jth element is 1. If it is impossible then the jth bit is
balanced.

In the reverse use, we constrain y⃗ and maximize ∑
384
i=1 xi by MILP.

For example, we constrain ∑
384
i=1 yi = 1 and maximize ∑

384
i=1 xi by using

MILP. Suppose the maximized value is d in r-round Gimli. Then,
in other words, if ∑

384
i=1 xi = d + 1, it is impossible that ∑

384
i=1 yi = 1.

From this it follows that the algebraic degree of r-round Gimli is at
most d. If we focus on a specific bit in the output, e. g., the jth bit,
we constrain y⃗ = e⃗j and maximize ∑

384
i=1 xi by using MILP. Moreover,

if the algebraic degree involving active bits chosen by attackers is
evaluated, we maximize ∑i∈S xi, where S is chosen by attackers. This
strategy allows us to efficiently evaluate the algebraic degree in several
scenarios.

We first evaluated the upper bound of the algebraic degree on
r-round Gimli, and the result is summarized in Table 4.5.

Table 4.5: Algebraic degree on r-round Gimli.

Rounds 1 2 3 4 5 6 7 8 9

Algebraic degree 2 4 8 16 29 52 95 163 266

When we focus on only one bit in the output of r-round Gimli,
the increase of the degree is slower than the general case. Especially,
the algebraic degree of z0 in each 96-bit value is lower than other
bits because z0 in rth round is the same as x6 in (r− 1)th round. All
bits except for z0 are mixed by at least two bits in (r − 1)th round.
Therefore, we next evaluate the upper bound of the algebraic degree
on four z0 in r-round Gimli, and the result is summarized as follows.

In integral attacks, a part of the input is chosen as active bits and
the other part is chosen as constant bits. Then, we have to evaluate the

90 gimli

Table 4.6: Algebraic degree on r-round Gimli.

Rounds 1 2 3 4 5 6 7 8 9 10 11

Algebraic degree 1 2 4 8 15 27 48 88 153 254 367

algebraic degree involving active bits. From the structure of the round
function of Gimli, the algebraic degree will be small when 96 entire
bits in each column are active. We evaluated two cases: the algebraic
degree involving si,0 is evaluated in the first case, and the algebraic
degree involving si,0 and si,1 is evaluated in the second case. Moreover,
all z0 in 4 columns are evaluated, and the following table summarizes
the upper bound of the algebraic degree in the weakest column in
every round.

Table 4.7: Upper bound of the algebraic degree in the weakest column in every
round.

Rounds 3 4 5 6 7 8 9 10 11 12 13 14

active 0 0 0 4 8 15 28 58 89 95 96 96 96

columns 0 and 1 0 0 7 15 30 47 97 153 190 191 191 192

The above result implies that Gimli has an 11-round integral dis-
tinguisher when 96 bits in si,0 are active and the others are constant.
Moreover, when 192 bits in si,0 and si,1 are active and the others are
constant, Gimli has a 13-round integral distinguisher.

4.5 implementations

This section reports the performance of Gimli for several target plat-
forms. See Tables 4.8 and 4.9 for cross-platform overviews of software
performance.

Table 4.8: AVR performance comparison with various permutations. ªHashing
500 bytesº: AVR cycles for comparability with [Bal+12]

Algorithm Cycles ROM Bytes RAM Bytes

Spongent [Bal+12] 25 464 000 364 101

Keccak- f [400] [Bal+12] 1 313 000 608 96

Gimli-Hash small 805 110 778 44

Gimli-Hash fast 362 712 19 218 45

m: our measurement, b: no data

4.5 implementations 91

Table 4.9: ªPermutationº: Cycles/byte for permutation on all platforms. AEAD
timings from [BL] are scaled to estimate permutation timings.

Permutation Cycles/B ROM Bytes RAM Bytes

AVR ATmega

Gimli small 413 778 44

ChaCha20 [Wea16] 238 ± b 132

Salsa20 [HS13] 216 1 750 266

Gimli fast 213 19 218 45

AES-128 [Poe03] small 171 1 570 ± b

AES-128 [Poe03] fast 155 3 098 ± b

arm Cortex-M0

Gimli 49 4 730 64

ChaCha20 [SN16] 40 ± b ± b

Chaskey [Mou+14] 17 414 ± b

arm Cortex-M3/M4

Spongent [Bog+11; SG15] (m) 129 486 1 180 ± b

Ascon [Dob+16b] (opt32 m) 196 ± b ± b

Keccak- f [400] [AK16] 106 540 ± b

AES-128 [SS a] 34 3 216 72

Gimli 21 3 972 44

ChaCha20 [HRS16] 13 2 868 8

Chaskey [Mou+14] 7 908 ± b

arm Cortex-A8

Keccak- f [400] (KetjeSR) [BL] 37.52 ± b ± b

Ascon [BL] 25.54 ± b ± b

AES-128 [BL] many blocks 19.25 ± b ± b

Gimli single block 8.73 480 ± b

ChaCha20 [BL] multiple blocks 6.25 ± b ± b

Salsa20 [BL] multiple blocks 5.48 ± b ± b

Intel Haswell

Gimli single block 4.46 252 ± b

NORX-32-4-1 [BL] single block 2.84 ± b ± b

Gimli two blocks 2.33 724 ± b

Gimli four blocks 1.77 1227 ± b

Salsa20 [BL] eight blocks 1.38 ± b ± b

ChaCha20 [BL] eight blocks 1.20 ± b ± b

AES-128 [BL] many blocks 0.85 ± b ± b

94 gimli

Gimli in terms of size, even though in the end the final metric was
divided by the permutation size to try to ªnormalizeº the results.

Table 4.10: Hardware results for Gimli and competitors.
Gates Equivalent(GE). Slice(S). LUT(L). Flip-Flop(F).
* Could not finish the place and route, s: serial

Perm. State Vers. Cycl. Resources Period Time Res.×T.

size (ns) (ns) ÷State

FPGA ± Xilinx Spartan 6 LX75

Ascon 320 2 732 S(2700 L+325 F) 34.570 70 158.2

Gimli 384 12 2 1224 S(4398 L+389 F) 27.597 56 175.9

Keccak 400 2 1520 S(5555 L+405 F) 77.281 155 587.3

C-quark* 384 2 2630 S(9718 L+389 F) 98.680 198 1351.7

Photon 288 2 2774 S(9430 L+293 F) 74.587 150 1436.8

Spongent* 384 2 7763 S(19419 L+389 F) 292.160 585 11812.7

Gimli 384 24 1 2395 S(8769 L+385 F) 56.496 57 352.4

Gimli 384 8 3 831 S(2924 L+390 F) 24.531 74 159.3

Gimli 384 6 4 646 S(2398 L+390 F) 18.669 75 125.6

Gimli 384 4 6 415 S(1486 L+391 F) 8.565 52 55.5

Gimli 384 3 8 428 S(1587 L+393 F) 10.908 88 97.3

Gimli 384 2 12 221 S(815 L+392 F) 5.569 67 38.5

Gimli 384 1 24 178 S(587 L+394 F) 4.941 119 55.0

Gimli 384 s 108 139 S(492 L+397 F) 3.996 432 156.2

28nm ASIC ± ST 28nm FDSOI technology

Gimli 384 12 2 35452GE 2.2672 5 418.6

Ascon 320 2 32476GE 2.8457 6 577.6

Keccak 400 2 55683GE 5.6117 12 1562.4

C-quark 384 2 111852GE 9.9962 20 5823.4

Photon 288 2 296420GE 10.0000 20 20584.7

Spongent 384 2 1432047GE 12.0684 25 90013.1

Gimli 384 24 1 66205GE 4.2870 5 739.1

Gimli 384 8 3 25224GE 1.5921 5 313.7

Gimli 384 6 4 21675GE 2.1315 9 481.2

Gimli 384 4 6 14999GE 1.0549 7 247.2

Gimli 384 3 8 14808GE 2.0119 17 620.6

Gimli 384 2 12 10398GE 1.0598 13 344.4

Gimli 384 1 24 8097GE 1.0642 26 538.5

Gimli 384 s 108 5843GE 1.5352 166 2522.7

180nm ASIC ± UMC L180

Gimli 384 12 2 26685 9.9500 20 1382.9

Ascon 320 2 23381 11.4400 23 1671.7

Keccak 400 2 37102 22.4300 45 4161.0

C-quark 384 2 62190 37.2400 75 12062.1

Photon 288 2 163656 99.5900 200 113183.8

Spongent 384 2 234556 99.9900 200 122151.9

Gimli 384 24 1 53686 17.4500 18 2439.6

Gimli 384 8 3 19393 7.9100 24 1198.4

Gimli 384 6 4 15886 12.5100 51 2070.0

Gimli 384 4 6 11008 10.1700 62 1749.1

Gimli 384 3 8 10106 10.0500 81 2115.8

Gimli 384 2 12 7112 15.2000 183 3377.8

Gimli 384 1 24 5314 9.5200 229 3161.4

Gimli 384 s 108 3846 11.2300 1213 12146.0

4.5 implementations 95

The best results in Resources×Time/State are from 24-round Gimli

and 12-round Ascon-128, with Ascon slightly more efficient in the
FPGA results and Gimli more efficient in the ASIC results. Both
permutations in all 3 technologies had very similar results, while Kec-
cak-p[400, nr] is worse in all 3 technologies. The permutations Spon-
gent-256/256/128, Photon-256/32/32 and C-Quark have a much
higher resource utilization in all technologies. This is because they
were designed to work with little resources in exchange for a very high
response time (e.g., Spongent is reported to use 2641 GE for 18720
cycles, or 5011 GE for 195 cycles), therefore changing the resource
utilization from logic gates to time. Gimli and Ascon are the most
efficient in the sense of offering a similar security level to Spongent,
Photon and C-Quark, with much lower product of time and logic
resources.

4.5.2 SP-box in assembly

We now turn our attention to software. Subsequent subsections explain
how to optimize Gimli for various illustrative examples of CPUs. As a
starting point, we show in Code 4.5.2 how to apply the Gimli SP-box
to three 32-bit registers x, y, z using just two temporary registers u, v.

Rotate
x ← x ≪ 24
y ← y ≪ 9
u ← x
.
.

Compute x
v ← z ≪ 1
x ← y ∧ z
x ← x ≪ 2
x ← x ⊕ v
x ← x ⊕ u

Compute y
v ← y
y ← u ∨ z
y ← y ≪ 1
y ← y ⊕ u
y ← y ⊕ v

Compute z
u ← u ∧ v
u ← u ≪ 3
v ← v ⊕ u
z ← v ⊕ z
.

Code 4.5.2: SP-box assembly instructions

4.5.3 8-bit microcontroller: AVR ATmega

The avr architecture provides 32 8-bit registers (256 bits). This does
not allow the full 384-bit Gimli state to stay in the registers: we are
forced to use loads and stores in the main loop.

To minimize the overhead for loads and stores, we work on a half-
state (two columns) for as long as possible. For example, we focus on
the left half-state for rounds 21, 20, 19, 18, 17, 16, 15, 14. Before doing
this, we focus on the right half-state through the end of round 18, so
that the Big-Swap at the end of round 18 can feed 2 words (64 bits)
from the right half-state into the left half-state. See Figure 4.9 for the
exact order of computation.

A half-state requires a total of 24 registers (6 words), leaving us with
8 registers (2 words) to use as temporaries. We can therefore use the
same order of operations as defined in Code 4.5.2 for each SP-box. In
a stretch of 8 rounds on a half-state (16 SP-boxes) there are just a few
loads and stores.

96 gimli

We provide two implementations of this construction. One is fully
unrolled and optimized for speed: it runs in just 10 264 cycles, using
19 218 bytes of ROM. The other is optimized for size: it uses just 778

bytes of ROM and runs in 23 670 cycles. Each implementation requires
about the same amount of stack, namely 45 bytes.

1 2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

. . .

Round 21

Round 20

Round 19

Round 18

1. SP-box col. 0

2. SP-box col. 1

swap word s0,0 and s0,1
3. SP-box col. 1

4. SP-box col. 1

5. SP-box col. 0

6. SP-box col. 0

store columns 0,1

load columns 2,3

7. SP-box col. 2

8. SP-box col. 3

swap word s0,2 and s0,3
9. SP-box col. 3

10. SP-box col. 3

11. SP-box col. 2

12. SP-box col. 2

push word s0,2, s0,3
load word s0,0, s0,1
13. SP-box col. 2

14. SP-box col. 2

15. SP-box col. 3

16. SP-box col. 3

swap word s0,2 and s0,3
17. SP-box col. 3

18. SP-box col. 3

19. SP-box col. 2

20. SP-box col. 2

store columns 2,3

load columns 0,1

pop word s0,0, s0,1
21. SP-box col. 0

22. SP-box col. 0

23. SP-box col. 1

24. SP-box col. 1

swap word s0,0 and s0,1
25. SP-box col. 1

26. SP-box col. 1

27. SP-box col. 0

28. SP-box col. 0

push word s0,0, s0,1
load word s0,2, s0,3
. . .

Round 24

Round 23

Round 22

Figure 4.9: Computation order on AVR.

4.5 implementations 97

4.5.4 32-bit low-end embedded microcontroller: arm Cortex-M0

arm Cortex-M0 comes with 16 32-bit registers, of which we can use
14 for our computations. However, orr, eor, and-like instructions can
only be used on the lower registers (r0 to r7). This forces us to use
the same computation layout as in the AVR implementation. We split
the state into two halves: one in the lower registers, one in the higher
ones. Then we can operate on each during multiple rounds before
exchanging them.

4.5.5 32-bit high-end embedded microcontroller: arm Cortex-M3

We focus here on the arm Cortex-M3 microprocessor, which imple-
ments the ARMv7-M architecture. There is a higher-end microcon-
troller, the Cortex-M4, implementing the ARMv7E-M architecture;
but our Gimli software does not make use of any of the DSP, (op-
tional) floating-point, or additional saturated instructions added in
this architecture.

The Cortex-M3 features 16 32-bit registers r0 to r15, with one reg-
ister used as program counter and one as stack pointer, leaving 14

registers for free use. As the Gimli state fits into 12 registers, and we
need only 2 registers for temporary values, we compute the Gimli

permutation without requiring any load or store instructions beyond
the initial loads of the input and the final stores of the output.

One particularly interesting feature of various arm instruction sets
including the ARMv7-M instruction set are free shifts and rotates
as part of arithmetic instructions. More specifically, all bit-logical
operations allow one of the inputs to be shifted or rotated by an
arbitrary fixed distance for free. This was used, e.g., in [SYY12, Sec. 3.1]
to eliminate all rotation instructions in an unrolled implementation of
BLAKE. For Gimli this feature gives us the non-cyclic shifts by 1, 2, 3

and the rotation by 9 for free. We have not found a way to eliminate
the rotation by 24. Each SP-box evaluation thus uses 10 instructions:
namely, 9 bit-logical operations (6 xors, 2 ands, and 1 or) and one
rotation.

From these considerations we can derive a lower bound on the
amount of cycles required for the Gimli permutation: Each round
performs 4 SP-box evaluations (one on each of the columns of the
state), each using 10 instructions, for a total of 40 instructions. In
24 rounds we thus end up with 24 · 40 = 960 instructions from the
SP-boxes, plus 6 xors for the addition of round constants. This gives
us a lower bound of 966 cycles for the Gimli permutation, assuming
an unrolled implementation in which all Big-Swap and Small-Swap
operations are handled through (free) renaming of registers. Our
implementation for the M3 uses such a fully unrolled approach and
takes 1 047 cycles. This discrepancy with the theoretical bound is the
result of the loads and stores of the state.

98 gimli

4.5.6 32-bit smartphone CPU: arm Cortex-A8 with NEON

We focus on a Cortex-A8 for comparability with the highly optimized
Salsa20 results of [BS12]. As a future optimization target we suggest a
newer Cortex-A7 CPU core, which according to arm has appeared in
more than a billion chips. Since our Gimli software uses almost purely
vector instructions (unlike [BS12], which mixes integer instructions
with vector instructions), we expect it to perform similarly on the
Cortex-A7 and the Cortex-A8.

The Gimli state fits naturally into three 128-bit NEON vector regis-
ters, one row per vector. The T-function inside the Gimli SP-box is an
obvious match for the NEON vector instructions: two ands, one or,
four shifts, and six xors. The rotation by 9 uses three vector instruc-
tions. The rotation by 24 uses two 64-bit vector instructions, namely
permutations of byte positions (vtbl) using a precomputed 8-byte
permutation. The four SP-boxes in a round use 18 vector instructions
overall.

A straightforward 4-round-unrolled assembly implementation uses
just 77 instructions for the main loop: 72 for the SP-boxes, 1 vrev64.i32

for Small-Swap, 1 to load the round constant from a precomputed 96-
byte table, 1 to xor the round constant, and 2 for loop control (which
would be reduced by further unrolling). We handle Big-Swap implicitly
through the choice of registers in two vtbl instructions, rather than
using an extra vswp instruction. Outside the main loop we use just 9

instructions, plus 3 instructions to collect timing information and 20

bytes of alignment, for 480 bytes of code overall.
The lower bound for arithmetic is 65 · 6 = 390 cycles: 16 arith-

metic cycles for each of the 24 rounds, and 6 extra for the round
constants. The Cortex-A8 can overlap permutations with arithmetic.
With moderate instruction-scheduling effort we achieved 419 cycles,
just 8.73 cycles/byte. For comparison, [BS12] says that a ªstraightfor-
ward NEON implementationº of the inner loop of Salsa20 ªcannot do
better than 11.25 cycles/byteº (720 cycles for 64 bytes), plus approx-
imately 1 cycle/byte overhead. [BS12] does better than this only by
handling multiple blocks in parallel: 880 cycles for 192 bytes, plus the
same overhead.

4.5.7 64-bit server CPU: Intel Haswell

Intel’s server/desktop/laptop CPUs have had 128-bit vectorized integer
instructions (ªSSE2º) starting with the Pentium 4 in 2001, and 256-bit
vectorized integer instructions (ªAVX2º) starting with the Haswell in
2013. In each case the vector registers appeared in CPUs a few years
earlier supporting vectorized floating-point instructions (ªStreaming
SIMD Extensions (SSE)º and ªAdvanced Vector Extensions (AVX)º),
including full-width bitwise logic operations, but not including shifts.
The vectorized integer instructions include shifts but not rotations.

4.6 conclusion : nist-lwc and third party cryptanalysis . 99

Intel has experimented with 512-bit vector instructions in coprocessors
such as Knights Corner and Knights Landing and later released in
September 2019 the Ice Lake architecture, supporting vectorized rota-
tions and three-input logical operations. However, we focus here on
CPUs that were commonly available from Intel and amd in 2017.

Our implementation strategy for these CPUs is similar to our imple-
mentation strategy for NEON: again the state fits naturally into three
128-bit vector registers, with Gimli instructions easily translating into
the CPU’s vector instructions. The cycle counts on Haswell are better
than the cycle counts for the Cortex-A8 since each Haswell core has
multiple vector units. We save another factor of almost 2 for 2-way-
parallel modes, since 2 parallel copies of the state fit naturally into
three 256-bit vector registers. As with the Cortex-A8, we outperform
Salsa20 and ChaCha20 for short messages.

4.6 conclusion : nist-lwc and third party cryptanalysis .

In July 2021, the NIST officially published their report of on the sec-
ond round candidates for LWC [Tur+21]. It provides a selection of 10

finalists which Gimli is not part of. This absence is easily explained
by several weaknesses discovered by multiple in-depth analyses of the
design. While none of these results invalidate any security claim of
Gimli-Hash or Gimli-Cipher, they raised sufficient concerns about
the security of the Gimli construction.

We now briefly summarize results published on the security of
the Gimli permutation, Gimli-Hash, and Gimli-Cipher since the
submission to NIST LWC. The state-of-the-art attacks on round-reduced
Gimli-Cipher and Gimli-Hash are summarized in Table 4.11.

Table 4.11: Summary of attacks on Gimli-Cipher and Gimli-Hash.

Scheme Attack Rounds Time Memory Data reference

Gimli-Hash

Collision 12 296 negl. [Fló+20]

Collision 6 291.4 negl. [Fló+20]

Collision 6 2113 negl. [ZDW19]

Collision 6 264 264 [LIM20a]

Preimages 5 296 265.6 [LIM20a]

Gimli-Cipher
State recovery 9 2190 2129 4 [LIM20a]

State recovery 5 2128 2126 4 [LIM20a]

More specific results are as follows:
• In [LIM20a; LIM20b; LIM19] the authors present various new

results on Gimli. This includes distinguishers, collision and
preimage attacks on round-reduced variants, and a new tech-
nique to find and verify differential characteristics for Gimli. It

100 gimli

is shown that several previous differential attacks used invalid
characteristics. Based on these results the authors propose sev-
eral round-reduced attacks on Gimli-Hash and Gimli-Cipher

(see Table 4.11).
• In [Fló+20] the authors provide several new distinguishers on the

Gimli permutation and round-reduced attacks on Gimli-Hash.
The best attacks on Gimli-Hash are included in Table 4.11.

• In [ZDW19] the authors present a 6-round collision attack on
Gimli based on the differential properties of the Gimli permu-
tation. See Table 4.11.

• In [Bak+20] the authors present distinguishers based on deep
learning for 8 rounds of Gimli-Hash and Gimli-Cipher. These
distinguishers are slower than the generic distinguisher de-
scribed above; additionally, contrary to most classical attacks, it
is not possible to extend their model to cover further rounds.

A P P E N D I X O F C H A P T E R 4

In the following, we provide C and hacspec1 implementations of
Gimli, Gimli-Hash and Gimli-Cipher. Additionally, we report on
the avalanche criterion analysis, differential trails, and benchmarks.

4.a the gimli permutation in c

#include <stdint.h>

uint32_t rotate(uint32_t x, int bits)
{
if (bits == 0) return x;
return (x << bits) | (x >> (32 - bits));

}

extern void gimli(uint32_t *state)
{
int round;
int column;
uint32_t x;
uint32_t y;
uint32_t z;

for (round = 24; round > 0; --round)
{
for (column = 0; column < 4; ++column)
{

x = rotate(state[column], 24);
y = rotate(state[4 + column], 9);
z = state[8 + column];

state[8 + column] = x ^ (z << 1) ^ ((y&z) << 2);
state[4 + column] = y ^ x ^ ((x|z) << 1);
state[column] = z ^ y ^ ((x&y) << 3);

}

if ((round & 3) == 0) { // small swap: pattern s...s...s...
x = state[0]; state[0] = state[1]; state[1] = x;
x = state[2]; state[2] = state[3]; state[3] = x;

}
if ((round & 3) == 2) { // big swap: pattern ..S...S...S.

x = state[0]; state[0] = state[2]; state[2] = x;
x = state[1]; state[1] = state[3]; state[3] = x;

}

if ((round & 3) == 0) { // add constant: pattern c...c...c...
state[0] ^= (0x9e377900 | round);

}
}

}

Code 4.1: C reference implementation of Gimli

1 https://hacspec.github.io/

101

https://hacspec.github.io/

102 gimli

4.b gimli-hash in c

#include <stdint.h>
#include <string.h>

int gimli_hash(unsigned char *out,
const unsigned char *in,
unsigned long long inlen)

{
uint32_t state[12];
uint8_t* state_8 = (uint8_t*)state;
uint64_t i;

// === Initialize the state ===
memset(state,0,sizeof(state));

// === Absorb all the input blocks ===
while (inlen >= 16) {

for(i=0;i<16;++i) state_8[i] ^= in[i];
in += 16;
inlen -= 16;
gimli(state);

}
for (i=0;i<inlen;++i) state_8[i] ^= in[i];
// === Do the padding and switch to the squeezing phase ===
state_8[i] ^= 1;
state_8[47] ^= 1;
gimli(state);

// === Squeeze out all the output blocks ===
for (i=0;i<16;++i) out[i] = state_8[i];
out += 16;
gimli(state);
for (i=0;i<16;++i) out[i] = state_8[i];

return 0;
}

4.C encryption function of gimli-cipher in c 103

4.c encryption function of gimli-cipher in c

#include <stdint.h>
#include <string.h>

int gimli_aead_encrypt(unsigned char *c,
unsigned long long *clen,
const unsigned char *m,
unsigned long long mlen,
const unsigned char *ad,
unsigned long long adlen,
const unsigned char *nsec,
const unsigned char *npub,
const unsigned char *k)

{
(void)nsec;
uint32_t state[12];
uint8_t *const state_8 = (uint8_t *)state;
unsigned long long i;

// === Initialize the state ===
memcpy(state_8, npub, 16);
memcpy(state_8 + 16, k, 32);
gimli(state);

*clen = mlen + 16;

// === Processing AD ===
while (adlen >= 16) {

for (i = 0; i < 16; ++i) state_8[i] ^= ad[i];
ad += 16;
adlen -= 16;
gimli(state);

}
for (i = 0; i < adlen; ++i) state_8[i] ^= ad[i];
state_8[i] ^= 1;
state_8[47] ^= 1;
gimli(state);

// === Processing Plaintext ===
while (mlen >= 16) {

for (i = 0; i < 16; ++i) state_8[i] ^= m[i];
for (i = 0; i < 16; ++i) c[i] = state_8[i];
c += 16;
m += 16;
mlen -= 16;
gimli(state);

}
for (i = 0; i < mlen; ++i) state_8[i] ^= m[i];
for (i = 0; i < mlen; ++i) c[i] = state_8[i];
c += mlen;
state_8[i] ^= 1;
state_8[47] ^= 1;
gimli(state);

// === Generate Tag ===
for (i = 0; i < 16; ++i) c[i] = state_8[i];

return 0;
}

104 gimli

4.d decryption function of gimli-cipher in c

#include <stdint.h>
#include <string.h>

int gimli_aead_decrypt(unsigned char *m,
unsigned long long *mlen,
unsigned char *nsec,
const unsigned char *c,
unsigned long long clen,
const unsigned char *ad,
unsigned long long adlen,
const unsigned char *npub,
const unsigned char *k)

{
(void)nsec;
uint32_t state[12];
uint8_t *const state_8 = (uint8_t *)state;
uint32_t result;
unsigned long long i;
unsigned long long tlen;

// === Ciphertext length is not smaller than 16 bytes: Tag ===
if (clen < 16)

return -1;

// === Message length ===
tlen = clen - 16;

*mlen = tlen;

// === Initialize the state ===
memcpy(state_8, npub, 16);
memcpy(state_8 + 16, k, 32);
gimli(state);

// === Processing AD ===
while (adlen >= 16) {

for (i = 0; i < 16; ++i) state_8[i] ^= ad[i];
gimli(state);
ad += 16;
adlen -= 16;

}
for (i = 0; i < adlen; ++i) state_8[i] ^= ad[i];
state_8[i] ^= 1;
state_8[47] ^= 1;
gimli(state);

// === Processing Ciphertext ===
while (tlen >= 16) {

for (i = 0; i < 16; ++i) m[i] = state_8[i] ^ c[i];
for (i = 0; i < 16; ++i) state_8[i] = c[i];
gimli(state);
c += 16;
m += 16;
tlen -= 16;

}
for (i = 0; i < tlen; ++i) m[i] = state_8[i] ^ c[i];
for (i = 0; i < tlen; ++i) state_8[i] = c[i];
c += tlen;
m += tlen;
state_8[tlen] ^= 1;
state_8[47] ^= 1;
gimli(state);

4.E the gimli permutation in hacspec 105

// === Verify Tag ===
result = 0;
for (i = 0; i < 16; ++i) result |= c[i] ^ state_8[i];
result -= 1;
result = ((int32_t)result) >> 16;

// === Mask Plaintext ===
tlen = *mlen;
m -= tlen;
for (i = 0; i < tlen; ++i) m[i] &= result;

return ~result;
}

4.e the gimli permutation in hacspec

array!(State, 12, U32, type_for_indexes: StateIdx);

fn swap(mut s: State, i: StateIdx, j: StateIdx) -> State {
let tmp = s[i];
s[i] = s[j];
s[j] = tmp;
s

}

fn gimli_round(mut s: State, r: u32) -> State {
for col in 0usize..4 {
let x = s[col].rotate_left(24);
let y = s[col + 4].rotate_left(9);
let z = s[col + 8];
s[col + 8] = x ^ (z << 1) ^ ((y & z) << 2);
s[col + 4] = y ^ x ^ ((x | z) << 1);
s[col] = z ^ y ^ ((x & y) << 3);

}

if (r & 3u32) == 0u32 {
s = swap(s, 0, 1);
s = swap(s, 2, 3);

}

if (r & 3u32) == 2u32 {
s = swap(s, 0, 2);
s = swap(s, 1, 3);

}

if (r & 3u32) == 0u32 {
s[0] = s[0] ^ (U32(0x9e377900u32) | U32(r))

}
s

}

pub fn gimli(mut s: State) -> State {
for rnd in 0..24 {
let rnd = (24 - rnd) as u32;
s = gimli_round(s, rnd);

}
s

}

Code 4.2: Hacspec reference implementation of Gimli

106 gimli

4.f gimli-hash in hacspec

bytes!(Block, 16);
bytes!(Digest, 32);

fn absorb_block(input_block: Block, mut s: State) -> State {
let input_bytes = input_block.to_le_U32s();
s[0] = s[0] ^ input_bytes[0];
s[1] = s[1] ^ input_bytes[1];
s[2] = s[2] ^ input_bytes[2];
s[3] = s[3] ^ input_bytes[3];
gimli(s)

}

fn squeeze_block(s: State) -> Block {
let mut block = Block::new();
for i in 0..4 {

// XXX: Rust can't figure out the type here for some reason.
let s_i: U32 = s[i];
let s_i_bytes = s_i.to_le_bytes();
block[4 * i] = s_i_bytes[0];
block[4 * i + 1] = s_i_bytes[1];
block[4 * i + 2] = s_i_bytes[2];
block[4 * i + 3] = s_i_bytes[3];

}
block

}

fn gimli_hash_state(input: &ByteSeq, mut s: State) -> State {
let rate = Block::length();
for i in 0..input.num_chunks(rate) {

let (block_len, input_block) = input.get_chunk(rate, i);
if block_len == rate {
// Absorb full blocks
let full_block = Block::from_seq(&input_block);
s = absorb_block(full_block, s);

} else {
// Absorb last incomplete block
// Note that this would work in all
// other cases as well, but the above is safer.
let input_block_padded = Block::new();
let mut input_block_padded =
input_block_padded.update_start(&input_block);

input_block_padded[block_len] = U8(1u8);

// XOR in capacity part
s[11] = s[11] ^ U32(0x01000000u32);
s = absorb_block(input_block_padded, s);

}
}

s
}

pub fn gimli_hash(input_bytes: &ByteSeq) -> Digest {
let s = State::new();
let s = gimli_hash_state(input_bytes, s);
let output = Digest::new();
let output = output.update_start(&squeeze_block(s));
let s = gimli(s);
output.update(Block::length(), &squeeze_block(s))

}

4.G encryption function of gimli-cipher in hacspec 107

4.g encryption function of gimli-cipher in hacspec

bytes!(Nonce, 16);
bytes!(Key, 32);
bytes!(Tag, 16);

fn process_ad(ad: &ByteSeq, s: State) -> State {
gimli_hash_state(ad, s)

}

fn process_msg(message: &ByteSeq, mut s: State) -> (State, ByteSeq) {
let mut ciphertext = ByteSeq::new(message.len());

let rate = Block::length();
let num_chunks = message.num_chunks(rate);
for i in 0..num_chunks {
let key_block = squeeze_block(s);
let (block_len, msg_block) = message.get_chunk(rate, i);

// This pads the msg_block if necessary.
let msg_block_padded = Block::new();
let mut msg_block_padded = msg_block_padded.update_start(&msg_block);

ciphertext = ciphertext.set_chunk(rate, i,
// the slice_range cuts off the last block if it is padded
&(msg_block_padded ^ key_block).slice_range(0..block_len),

);
if i == num_chunks - 1 {

msg_block_padded[block_len] = msg_block_padded[block_len] ^ U8(1u8);
s[11] = s[11] ^ U32(0x01000000u32); // s_2,3

}
s = absorb_block(msg_block_padded, s);

}

(s, ciphertext)
}

fn process_ct(ciphertext: &ByteSeq, mut s: State) -> (State, ByteSeq) {
let mut message = ByteSeq::new(ciphertext.len());

let rate = Block::length();
let num_chunks = ciphertext.num_chunks(rate);
for i in 0..num_chunks {
let key_block = squeeze_block(s);
let (block_len, ct_block) = ciphertext.get_chunk(rate, i);

// This pads the ct_block if necessary.
let ct_block_padded = Block::new();
let ct_block_padded = ct_block_padded.update_start(&ct_block);
let msg_block = ct_block_padded ^ key_block;
// Zero pad the block if necessary
// (replace bytes with zeros if block_len != rate).
let mut msg_block = Block::from_slice_range(&msg_block, 0..block_len);

// Slice_range cuts off the msg_block to the actual length.
message = message.set_chunk(rate, i, &msg_block.slice_range(0..block_len));
if i == num_chunks - 1 {

msg_block[block_len] = msg_block[block_len] ^ U8(1u8);
s[11] = s[11] ^ U32(0x01000000u32); // s_2,3

}
s = absorb_block(msg_block, s);

}

108 gimli

(s, message)
}

pub fn nonce_to_u32s(nonce: Nonce) -> Seq<U32> {
let mut uints = Seq::<U32>::new(4);
uints[0] = U32_from_le_bytes(

U32Word::from_slice_range(&nonce, 0..4));
uints[1] = U32_from_le_bytes(

U32Word::from_slice_range(&nonce, 4..8));
uints[2] = U32_from_le_bytes(

U32Word::from_slice_range(&nonce, 8..12));
uints[3] = U32_from_le_bytes(

U32Word::from_slice_range(&nonce, 12..16));
uints

}

pub fn key_to_u32s(key: Key) -> Seq<U32> {
let mut uints = Seq::<U32>::new(8);
uints[0] = U32_from_le_bytes(

U32Word::from_slice_range(&key, 0..4));
uints[1] = U32_from_le_bytes(

U32Word::from_slice_range(&key, 4..8));
uints[2] = U32_from_le_bytes(

U32Word::from_slice_range(&key, 8..12));
uints[3] = U32_from_le_bytes(

U32Word::from_slice_range(&key, 12..16));
uints[4] = U32_from_le_bytes(

U32Word::from_slice_range(&key, 16..20));
uints[5] = U32_from_le_bytes(

U32Word::from_slice_range(&key, 20..24));
uints[6] = U32_from_le_bytes(

U32Word::from_slice_range(&key, 24..28));
uints[7] = U32_from_le_bytes(

U32Word::from_slice_range(&key, 28..32));
uints

}

pub fn gimli_aead_encrypt(
message: &ByteSeq,
ad: &ByteSeq,
nonce: Nonce,
key: Key,

) -> (ByteSeq, Tag) {
// Add nonce and key to state
let s = State::from_seq(

&nonce_to_u32s(nonce).concat(&key_to_u32s(key)));
let s = gimli(s);

let s = process_ad(ad, s);
let (s, ciphertext) = process_msg(message, s);

let tag = squeeze_block(s);
let tag = Tag::from_seq(&tag);

(ciphertext, tag)
}

4.H decryption function of gimli-cipher in hacspec 109

4.h decryption function of gimli-cipher in hacspec

pub fn gimli_aead_decrypt(
ciphertext: &ByteSeq,
ad: &ByteSeq,
tag: Tag,
nonce: Nonce,
key: Key,

) -> ByteSeq {
// Add nonce and key to state
let s = State::from_seq(

&nonce_to_u32s(nonce).concat(&key_to_u32s(key)));
let s = gimli(s);

let s = process_ad(ad, s);
let (s, message) = process_ct(ciphertext, s);

let my_tag = squeeze_block(s);
let my_tag = Tag::from_seq(&my_tag);

let mut out = ByteSeq::new(0);
if my_tag.equal(tag) {
out = message;

};

out
}

110 gimli

4.i avalanche criterion

The following table shows the average number of flipped bits after 10

rounds if the bit at the index position is flipped. Sampling has been
done over 1024 independent random inputs.

Table 4.12: average number bit flipped and standard deviation.
format: bit index (Åx, σ)

s0,0 s1,0 s2,0

000 (192.3, 9.6) 032 (192.5, 9.5) 064 (191.8, 9.9)

001 (191.8, 9.8) 033 (192.2, 9.8) 065 (192.8, 9.9)

002 (191.8, 9.8) 034 (192.0, 10.2) 066 (191.7, 9.5)

003 (192.3, 9.6) 035 (191.7, 9.7) 067 (191.5, 9.6)

004 (192.1, 9.8) 036 (192.4, 9.6) 068 (192.0, 10.0)

005 (191.7, 9.9) 037 (191.3, 9.7) 069 (192.0, 10.1)

006 (192.1, 9.9) 038 (191.8, 9.9) 070 (192.0, 9.5)

007 (191.9, 9.8) 039 (192.2, 9.8) 071 (191.2, 9.8)

008 (191.7, 9.8) 040 (192.2, 9.9) 072 (192.2, 9.9)

009 (192.1, 9.8) 041 (192.6, 10.0) 073 (191.7, 9.6)

010 (191.8, 10.1) 042 (192.1, 9.9) 074 (192.2, 9.9)

011 (191.7, 9.9) 043 (192.7, 9.9) 075 (191.8, 9.7)

012 (191.9, 9.8) 044 (191.9, 9.8) 076 (191.9, 9.9)

013 (191.7, 9.3) 045 (192.1, 9.4) 077 (192.4, 9.5)

014 (192.2, 9.6) 046 (192.5, 9.7) 078 (191.9, 9.6)

015 (192.4, 9.5) 047 (192.5, 9.7) 079 (192.0, 10.2)

016 (191.9, 9.7) 048 (192.3, 9.9) 080 (191.8, 9.7)

017 (191.9, 9.7) 049 (192.0, 9.6) 081 (192.7, 9.6)

018 (191.5, 9.7) 050 (191.8, 9.9) 082 (192.2, 9.8)

019 (191.8, 9.6) 051 (191.5, 9.7) 083 (191.9, 9.9)

020 (191.9, 9.7) 052 (192.0, 10.1) 084 (192.5, 9.9)

021 (192.0, 9.8) 053 (192.0, 9.8) 085 (192.1, 9.9)

022 (192.1, 9.7) 054 (191.6, 9.8) 086 (192.2, 9.6)

023 (191.8, 10.2) 055 (192.3, 9.9) 087 (191.6, 9.9)

024 (191.9, 10.0) 056 (191.9, 9.6) 088 (191.6, 9.7)

025 (192.1, 9.9) 057 (192.1, 9.5) 089 (192.4, 9.5)

026 (191.8, 9.9) 058 (192.2, 10.3) 090 (192.5, 10.1)

027 (191.9, 10.1) 059 (192.1, 9.8) 091 (191.8, 9.8)

028 (192.0, 10.0) 060 (192.7, 10.1) 092 (192.2, 9.6)

029 (192.4, 9.9) 061 (192.0, 9.5) 093 (191.9, 10.1)

030 (192.0, 10.0) 062 (192.0, 9.8) 094 (192.3, 9.7)

031 (192.1, 10.0) 063 (191.6, 10.2) 095 (191.7, 9.7)

4.I avalanche criterion 111

s0,1 s1,1 s2,1

096 (191.8, 9.7) 128 (192.5, 9.8) 160 (192.0, 9.8)

097 (191.3, 9.9) 129 (192.0, 10.1) 161 (192.0, 9.8)

098 (192.1, 10.1) 130 (191.9, 10.0) 162 (191.7, 9.7)

099 (191.7, 9.9) 131 (191.9, 10.0) 163 (191.6, 9.7)

100 (191.8, 9.8) 132 (192.1, 10.0) 164 (192.2, 9.9)

101 (191.7, 10.0) 133 (192.1, 9.7) 165 (192.1, 10.3)

102 (192.3, 10.0) 134 (192.0, 9.7) 166 (192.3, 10.1)

103 (191.8, 9.6) 135 (192.4, 9.4) 167 (192.0, 9.8)

104 (192.0, 9.4) 136 (192.4, 9.9) 168 (192.2, 9.8)

105 (191.8, 9.8) 137 (191.9, 9.8) 169 (192.1, 9.5)

106 (192.2, 10.0) 138 (191.9, 10.3) 170 (191.6, 9.6)

107 (192.3, 9.6) 139 (191.6, 9.7) 171 (192.2, 10.0)

108 (192.0, 9.7) 140 (191.8, 9.9) 172 (192.5, 10.1)

109 (191.9, 9.5) 141 (192.6, 9.8) 173 (192.2, 9.6)

110 (192.1, 9.6) 142 (191.6, 9.8) 174 (192.6, 9.9)

111 (192.5, 9.6) 143 (191.7, 9.8) 175 (192.3, 9.6)

112 (192.0, 9.6) 144 (192.0, 9.8) 176 (192.0, 9.8)

113 (191.9, 9.6) 145 (191.8, 9.6) 177 (192.4, 9.9)

114 (191.7, 9.5) 146 (191.7, 10.0) 178 (192.5, 9.6)

115 (192.4, 9.8) 147 (191.7, 9.9) 179 (191.5, 9.5)

116 (192.0, 9.7) 148 (191.7, 9.9) 180 (191.9, 9.7)

117 (191.8, 9.8) 149 (192.1, 9.7) 181 (192.4, 9.7)

118 (192.1, 9.6) 150 (191.7, 9.9) 182 (192.0, 9.9)

119 (192.4, 10.0) 151 (191.9, 10.0) 183 (191.5, 9.9)

120 (191.9, 10.0) 152 (191.9, 9.9) 184 (192.1, 9.8)

121 (191.6, 9.6) 153 (192.5, 10.1) 185 (191.8, 9.8)

122 (192.1, 9.6) 154 (192.2, 10.1) 186 (191.9, 9.7)

123 (191.6, 9.6) 155 (191.6, 9.9) 187 (192.1, 9.8)

124 (191.8, 9.6) 156 (191.9, 9.3) 188 (192.2, 9.9)

125 (191.6, 9.7) 157 (192.2, 9.8) 189 (192.2, 9.6)

126 (191.6, 9.8) 158 (192.1, 9.9) 190 (192.4, 9.8)

127 (192.2, 9.8) 159 (191.6, 9.5) 191 (192.8, 10.1)

112 gimli

s0,2 s1,2 s2,2

192 (192.0, 9.8) 224 (192.5, 9.8) 256 (192.2, 10.0)

193 (191.6, 9.9) 225 (191.5, 10.2) 257 (192.4, 9.7)

194 (191.9, 10.0) 226 (192.9, 9.8) 258 (191.9, 9.6)

195 (192.0, 9.6) 227 (191.5, 9.5) 259 (192.5, 9.7)

196 (191.5, 10.0) 228 (192.3, 9.8) 260 (191.9, 9.9)

197 (192.1, 9.9) 229 (192.2, 9.8) 261 (192.9, 9.5)

198 (191.9, 9.8) 230 (191.9, 9.7) 262 (192.4, 9.8)

199 (191.7, 9.4) 231 (191.9, 9.8) 263 (191.9, 10.0)

200 (192.0, 9.6) 232 (192.5, 10.2) 264 (191.9, 10.0)

201 (191.3, 9.8) 233 (192.0, 9.9) 265 (192.2, 9.6)

202 (191.5, 9.9) 234 (191.6, 10.0) 266 (191.9, 10.0)

203 (192.0, 9.9) 235 (192.1, 9.7) 267 (191.9, 10.0)

204 (191.8, 9.8) 236 (191.9, 9.4) 268 (191.9, 9.7)

205 (191.9, 9.9) 237 (192.1, 9.3) 269 (191.9, 9.6)

206 (192.2, 9.9) 238 (191.9, 9.8) 270 (192.2, 9.6)

207 (192.4, 9.8) 239 (192.2, 10.0) 271 (192.1, 9.7)

208 (191.7, 10.2) 240 (191.8, 9.7) 272 (191.7, 9.9)

209 (191.9, 9.7) 241 (191.6, 10.4) 273 (191.9, 9.8)

210 (192.0, 9.5) 242 (192.0, 10.0) 274 (192.4, 10.1)

211 (192.3, 10.0) 243 (192.0, 9.6) 275 (192.0, 9.7)

212 (192.3, 9.9) 244 (192.5, 9.5) 276 (192.3, 10.0)

213 (191.8, 9.4) 245 (192.3, 9.8) 277 (192.1, 9.9)

214 (192.3, 9.8) 246 (192.0, 9.7) 278 (192.3, 9.8)

215 (192.0, 10.2) 247 (192.3, 9.6) 279 (191.5, 10.0)

216 (191.8, 10.2) 248 (192.1, 10.2) 280 (192.0, 9.6)

217 (192.4, 9.8) 249 (192.0, 9.6) 281 (191.6, 9.8)

218 (192.3, 10.0) 250 (191.7, 9.7) 282 (192.2, 9.8)

219 (192.1, 9.7) 251 (192.3, 9.5) 283 (192.1, 9.9)

220 (192.1, 9.9) 252 (192.0, 9.7) 284 (191.5, 9.9)

221 (191.8, 10.0) 253 (192.4, 10.4) 285 (192.1, 9.7)

222 (192.6, 9.8) 254 (192.3, 9.6) 286 (191.9, 9.7)

223 (191.8, 10.0) 255 (192.3, 9.9) 287 (192.1, 9.9)

4.I avalanche criterion 113

s0,3 s1,3 s2,3

288 (191.7, 9.6) 320 (192.2, 9.6) 352 (191.6, 9.7)

289 (192.3, 10.0) 321 (192.1, 9.8) 353 (192.3, 9.9)

290 (192.0, 9.8) 322 (191.6, 9.7) 354 (192.2, 9.7)

291 (192.2, 10.2) 323 (192.2, 9.4) 355 (191.7, 9.9)

292 (192.3, 9.5) 324 (192.0, 9.6) 356 (191.5, 9.8)

293 (191.8, 10.0) 325 (191.5, 9.7) 357 (192.3, 9.7)

294 (192.0, 9.7) 326 (192.5, 10.2) 358 (192.2, 9.8)

295 (192.5, 9.7) 327 (192.6, 10.0) 359 (191.7, 9.9)

296 (192.1, 9.7) 328 (192.0, 9.6) 360 (192.0, 10.0)

297 (192.1, 9.4) 329 (192.2, 9.9) 361 (192.2, 9.7)

298 (192.1, 9.8) 330 (192.0, 9.8) 362 (191.9, 9.5)

299 (191.8, 9.7) 331 (191.9, 9.9) 363 (191.9, 9.7)

300 (192.2, 9.5) 332 (192.1, 9.7) 364 (191.9, 10.1)

301 (192.3, 10.2) 333 (192.5, 9.9) 365 (191.9, 9.9)

302 (192.1, 9.7) 334 (191.9, 9.8) 366 (192.0, 9.9)

303 (191.9, 10.0) 335 (191.9, 9.6) 367 (192.0, 9.8)

304 (192.0, 10.2) 336 (192.3, 9.7) 368 (191.9, 9.5)

305 (191.9, 9.8) 337 (191.7, 9.6) 369 (191.9, 9.9)

306 (192.5, 9.5) 338 (192.0, 9.7) 370 (192.1, 10.0)

307 (191.9, 9.5) 339 (192.1, 10.2) 371 (191.9, 10.2)

308 (191.8, 9.8) 340 (192.0, 9.8) 372 (191.8, 9.8)

309 (192.4, 9.6) 341 (192.3, 9.6) 373 (191.9, 9.8)

310 (192.0, 9.8) 342 (192.3, 9.8) 374 (192.1, 10.1)

311 (191.5, 9.7) 343 (191.7, 9.6) 375 (192.2, 9.7)

312 (192.3, 10.0) 344 (192.4, 10.3) 376 (192.3, 9.9)

313 (191.8, 9.7) 345 (192.2, 9.9) 377 (192.3, 9.7)

314 (192.2, 10.2) 346 (192.2, 10.0) 378 (192.0, 9.8)

315 (192.4, 9.8) 347 (192.3, 9.9) 379 (191.4, 10.0)

316 (192.2, 9.9) 348 (191.8, 9.9) 380 (191.9, 9.9)

317 (192.3, 9.7) 349 (192.3, 9.3) 381 (191.8, 9.8)

318 (191.8, 9.5) 350 (192.4, 9.6) 382 (191.9, 9.7)

319 (192.2, 9.6) 351 (192.1, 9.8) 383 (191.0, 9.6)

5A S S E M B LY O R O P T I M I Z E D C F O R L I G H T W E I G H T
C RY P T O G R A P H Y O N R I S C - V ?

After a short introduction, this chapter is structured as follows. Sec-
tion 5.2 provides background information on the RISC-V 32-bit archi-
tecture and instruction set. We also give the necessary details on the
platforms used for benchmarking. In Section 5.3, we briefly recall the
selected algorithms and present our optimization strategies. Then, we
describe the benchmark and discuss the achieved results in Section 5.4.
Finally, in Section 5.6, we conclude the chapter.

5.1 introduction

The RISC-V project, with roots in academia and research (Univer-
sity of California, Berkeley), has initiated a fundamental shift in the
technical and business models for microprocessors. RISC-V [Wat+17],
a royalty-free and open-source reduced-instruction-set architecture
(ISA), provides a competitive advantage and the required degree of
flexibility to develop secure microprocessors with addresses of 32-, 64-,
and 128-bits in length.

contribution. We compare optimization at different levels of
the round-2 NIST-LWC [SN15] candidates on the RISC-V architecture.
To achieve this, we first present optimized RISC-V implementations
of several cryptographic algorithms. Further, we study the impact of
implementing these primitives on RISC-V in assembly compared to
implementations in C. Based on this, general implementation strategies
are derived and discussed.

related work . Many aspects regarding the optimization of light-
weight cryptographic algorithms have been studied in the literature.
In [Mou15], generic security, efficiency, and some considerations for
cryptographic design of lightweight constructions were explored. Cruz,
Reis, Aranha, López, and Patil [Cru+16] discussed techniques for effi-
cient and secure implementations of lightweight encryption on arm

devices. Also, the modular and reusable architecture of RISC-V fa-
cilitates a variety of designs for the implementation of accelerators,
ranging from loosely [Wan+20] to tightly coupled designs [Alk+20;
FSS20]. However, only few works focused on the optimization of
cryptographic algorithms on the standard RISC-V instruction set. Stof-
felen [Sto19] presented the first optimized assembly implementations
of AES, ChaCha, and the Keccak- f [1600] permutation for the RISC-V

115

116 assembly or optimized c for lwc on risc-v?

instruction set. In [Nis+19] the 32-second round finalists from the
NIST-LWC were evaluated on RISC-V without further optimization.

availability of implementations . We place all software and
hardware implementations described in this chapter into the public
domain to maximize reusability of our results. They are available in
the associated material of this thesis (Section 1.3) and directly at https:
//github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV.

5.2 risc-v

In Section 5.2.1 we describe in more details the RISC-V 32-bit archi-
tecture before detailing the associated instruction set (Section 5.2.2).
We then discuss different approaches to execute code targeting the
RISC-V platform (Section 5.2.3).

5.2.1 Architecture

The RISC-V architecture uses 32 32-bit registers numbered from x0

through x31. To ease their use, they also have aliases. zero (x0) is
hard-wired to the value 0; ra (x1) corresponds to the return address;
sp (x2) to the stack pointer; gp (x3) to the global pointer; tp (x4) to the
thread pointer. a0-a7 (x10-x17) are function arguments with a0 and
a1 also functioning as return values. s0-s11 (x8-x9, x18-x27) are saved
registers. Finally, t0-t6 (x5-x7, x28-x31) are temporary registers.

The caller has the responsibility for the saved registers s0-s11 while
the callee is able to freely modify the arguments (a0-a7) and temporary
registers (t0-t6).

Excluding the zero, ra, sp, gp, and tp registers, we are left with 27

freely usable 32-bit registers. This is about twice of what is available in
the Cortex-M3 and Cortex-M4 architectures; and it enables us to easily
take care of register allocation.

5.2.2 Instruction set

The RISC-V base instruction set contains a small number of instruc-
tions which we briefly describe here.

Bitwise and arithmetic instructions such as add, addi, and, andi, or,
ori, sub, xor, xori take three register operands, or if postfixed by i,
two registers and one 12-bit sign-extended immediate.

We soon notice missing instructions. e. g., mov rd, rs is imple-
mented by taking advantage of the zero register as add rd, zero, rs.
Similarly, the two’s complement negation neg rd, rs is replaced by
sub rd, zero, rs and the one’s complement negation not rd, rs as
xori rd, rs, -1. Subtract immediate (subi) is written as addi with a
negative immediate.

https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV
https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV

5.2 risc-v 117

The base ISA does not provide rotation instructions but only log-
ical and arithmetic shifts: sll, slli, srl, srli, sra, and srai. Those
instructions are read as shift [left|right] [logical|arithmetic].

The loading of constants is done with two instructions: lui and
addi. Load upper immediate lui takes a 20-bit unsigned immediate
and places it in the upper 20 bits of the destination register. The lowest
12 bits are filled with zeros.

.equ UART_BASE, 0x40003000

lui a0, %hi(UART_BASE)
addi a0, a0, %lo(UART_BASE)

In order to load words, half-words (unsigned), or bytes (unsigned)
from memory, the instructions lw, lh, lhu, lb, lbu are used. Similarly
sw, sh, shu, sb, sbu are available to store values into the memory. For
example lw a5, 8(a2) will load into a5 the word located at address
a2 + 8. Note that the offset has to be a constant. Additionally, loads
and stores of words have to be 32-bit aligned, e. g., lw a5, 3(a2) will
fail.

Text labels are used as targets for branches, unconditional jumps and
symbol offsets. They are added to the symbol table of the compiled
module. Numeric labels are used for local references. When used in
jumps and similar instructions, they are suffixed with ‘f’ for a forward
reference or ‘b’ for a backwards reference.

loop:
...
j loop

j func
...

fun:

1:
...
j 1b

j 2f
...

2:

In addition to the jal and jalr unconditional jump Ðrelative to
the program counter or as an absolute address in a registerÐ the
instruction beq, blt, bltu, bge, bgeu are used for conditional jumps.
They take three arguments, the first two are used in the comparison
while the third one is the destination ÐlabelÐ encoded later as an
offset relative to the program counter.

To perform our benchmarks we use the csrr instruction (control
and status register) to read the 64-bit cycle-counter. On the RV32I
architecture, it is split into two 32-bit words (cycle and cycleh).

5.2.3 Executing code

To write optimized code for a specific architecture, we need ways
to measure improvements or regressions. Below, we describe 3 test
platforms which allowed us to benchmark our code.

118 assembly or optimized c for lwc on risc-v?

sifive e31 core . We use a HiFive11 development board which
contains the FE310-G000 SoC with an E31 core. The CPU implements
the RV32IMAC instruction set. This corresponds to the RV32I base
ISA with the extensions for multiplications, atomic instructions and
compressed instructions.

It has to be noted that RISC-V does not specify how many cycles an
instruction may take or the kind of memory used. As a result, bench-
marks between different RISC-V cores have to be carefully compared.

The E31 runs at 320+ MHz and uses a 5-stage single-issue in-order
pipeline. Additionally, it uses a 16KB, 2-way instruction cache. Fetching
an instruction from the cache takes only 1 cycle. The execution of most
instructions takes 1 cycle, with a few exceptions. For example, on
a cache hit, load word (lw) takes 2 cycles, loads of half word (lh)
and bytes (lb) have a 3-cycle latency. In the case of a cache miss, the
latency is highly dependent on the flash controller’s clock frequency.
To prevent such unpredictability, we fill up the cache before any
benchmarks.

The E31 comes with a 1-cycle-latency branch predictor. It uses a
28-entry branch target buffer (BTB), a 512-entry branch history table
(BHT) for the direction of conditional branches, and a 6-entry return-
address stack (RAS). A correctly predicted control-flow instruction
results in no penalty while mispredictions incur a 3-cycle penalty.

The RISC-V specification requires a 64-bit cycle counter accessible
via two CSR registers which we will use to benchmark code. Occasion-
ally for unknown reasons measurements on the board may end up
taking much longer than expected, we ignore these odd values.

vexriscv simulator . The VexRiscv simulator [Spib] is a 32-bit
RISC-V CPU implementation written in SpinalHDL [Spia]. Although
it is possible to load the core onto an FPGA; we use the Verilator
simulator to emulate a core and flash binaries to it. This process
allows us to have cycle counts and to evaluate how each algorithm is
performing.

The core features the RV32IM instruction set. This corresponds to
the base ISA with the extension for multiplications. We initialize the
simulator with 256 KB of RAM and 128 KB of sRAM.

Similarly to the E31 core, the VexRiscv makes use of a 5-stage
pipeline. The absence of a branch predictor and an instruction cache
give a significant advantage to algorithms which have been unrolled
either by hand or the compiler. This explains major cycle-counts dif-
ferences in the execution of different implementations of a same algo-
rithm.

riscvovpsim simulator . Finally, as opposed to executing code
on a board or on a fully simulated core, we use the Open Virtual

1 Discontinued, see sifive.com/boards, last accessed on March 4th , 2021.

https://www.sifive.com/boards

5.3 optimized algorithms 119

Platforms developed by Imperas Software, Ltd. Their RISC-V simula-
tor [IS] uses Just-in-Time Code Morphing and executes RISC-V code
on a Linux or Windows host computer.

This simulator implements the full instruction set and permits us
to enable or disable specific extensions such as vector instructions or
bit manipulations. The B extension gives us access to more advanced
instructions such as rotations (rori, roli), packing (pack, packu), and
many others.

Unfortunately, this approach simulates neither an execution pipeline,
nor a cache. While it allows us to execute RISC-V binary files, the
results may be biased towards some optimization practices, leading
to significant differences between implementations as shown in our
benchmarks (see Section 5.4).

5.3 optimized algorithms

Optimized cryptographic implementation are usually written directly
in assembly with the idea to prevent the compiler from introducing
bugs or weaknesses, and to further improve the speed of the software.
By making sure we do not branch on secret data and considering
the small size of the RISC-V ISA, we trust the compiler to match our
implementations.

We call ªOptimized Cº the translation of an assembly implementa-
tion back into C, making use of uint32_t such that the C code mimics
the assembly instructions. The underlying idea is to have the compiler
further optimize our code and take care of the register allocation.

We now describe the algorithms we optimized and some of the
implementation strategies we used.

5.3.1 Gimli

Previously described in details in Chapter 4, Gimli [Ber+17a] is a
lightweight scheme proposed by Bernstein, Kölbl, Lucks, Massolino,
Mendel, Nawaz, Schneider, Schwabe, Standaert, Todo, and Viguier.

Its design puts an emphasis on cross-platform performance and
simplicity. The code is compact and uses only logical operations and
shifts. The absence of additions allows to ªinterleaveº implementations
for platform with different register size than 32 bits. An implementa-
tion for RISC-V-64 with the B extension would likely be using such
strategy.

On RISC-V-32 we are able to get speed-ups on both Gimli-Hash

and Gimli-Cipher by optimizing the underlying permutation Gimli.
Instead of using the order of instructions presented in Chapter 4, more
precisely in Code 4.5.2; we reschedule the order of instructions to
avoid swap operations.

120 assembly or optimized c for lwc on risc-v?

bounds and optimizations . We optimize Gimli by first having
a deeper look at the inner permutation and by computing the lower
bound of the number of cycles used. Gimli’s state representation uses
twelve 32-bit words which fit easily into the 27 general-use 32-bit
registers. [Ber+17a] shows that only 2 additional registers are required
in order to compute the column operations; as a result, in a fully
unrolled implementation, the only cycles necessary in the computation
are the ones required by the logical operations.

On each application of the round function, Gimli uses 2 rotations, 6

xors, 2 ands, 1 or, and 4 shifts. All logical operations have a latency
of 1 cycle, except for rotates which have a 3-cycle latency. A column
operation requires thus 19 cycles; iterated over 4 columns and 24

rounds, this totals to 1824 cycles.
Gimli uses 6 constants (each loaded in 2 cycles) derived every 4

rounds (an additional 5 cycles) before being xored into the state (6
xors, thus 6 cycles). When the permutation is not directly inlined and
used as a function, it requires 12 loads and 12 stores to get the state
into registers for an additional 48 cycles. Excluding the cycles needed
to preserve some of the callee registers, we have a total of 1885 cycles.

As a baseline, the reference C code runs at 2178 cycles. By using
careful scheduling of the instructions, and using a minimum number
of registersÐsaving into the stack only 4 callees, our assembly imple-
mentation runs in 2092 cycles. The Optimized C version runs in 2132

cycles. This timing difference is explained by the compiler’s use of the
12 callee registers, inducing a 40-cycle penalty.

By unrolling in CÐthe same approach could have been applied in
assemblyÐover 8 rounds and propagating the swapping by renaming
variable to avoid move operations, the compiler manages to achieve
further speed-ups by getting down to 1900 cycles. Using this last imple-
mentation, we get a 19% speed-up for Gimli-Hash and Gimli-Cipher

(Table 5.1).

Table 5.1: Cycle counts for different Gimli implementations on the SiFive board;
Gimli-Hash over 128 bytes of data, Gimli-Cipher over a 128 bytes
message with 128 bytes of associated data. Compiled with Clang-10
and -O3.

C-ref Assembly Opt. C
8-round
Opt. C

Gimli 2178 2092 2132 1900
(−4%) (−2%) (−1%)

Gimli-Hash 23120 20812 21055 18678
(−1%) (−9%) (−1%)

Gimli-Cipher 44423 39583 40816 35853
(−1%) (−8%) (−1%)

5.3 optimized algorithms 121

5.3.2 Sparkle

Sparkle [Bei+20] is a family of cryptographic permutations based
on the block cipher Sparx [Din+16b]. Schwaemm (an AEAD cipher
scheme) and Esch (a hash function) follow a not hermetic design
approach, and share Sparkle as the underlying permutation. The
Sparkle permutation is a classic ARX design, which, unlike most
ARX constructions, provides security guarantees with regard to dif-
ferential and linear cryptanalysis based on the long trail strategy
(LTS) [Din+16b]. Schwaemm and Esch work on a relatively small state,
which is only 256 bits for the most lightweight instance of Schwaemm

and 384 bits for the lightest variant of Esch. The biggest possible state
size with 512 bits can be applied by both schemes. Both algorithms
employ the sponge construction.

Two instances for hashing were proposed in [Bei+20], i. e., Esch256

and Esch384, which allow processing messages of arbitrary length and
output a digest of 256 bit, and 384 bit, length, respectively. Esch256,
the main instance of Esch and the one considered in our work, uses
the 384-bit Sparkle permutation and has a claimed security level of
128 bits.

All the four instances for authenticated encryption with associated
data proposed in [Bei+20], i. e., Schwaemm128-128, Schwaemm256-
128, Schwaemm192-192 and Schwaemm256-256 use a variation of the
Beetle mode of operation first presented in [Cha+18], which in turn
is based on the duplexed sponge construction. We focus again on
the main version Schwaemm256-128, which uses the 384 bit Sparkle

(Sparkle384) permutation, with a rate of r = 256 bit and a capacity of
c = 128 bit, claiming a security level of 120 bits.

Sparkle384 requires 50 rotations, 68 xors, 24 adds, and 2 shifts for
a single round. With the exception of rotation (3 cycles), all operations
have a latency of 1 cycle. Thus, iterated over 7 or 11 rounds this totals to
an estimated lower bound of 1708 cycles, and 2684 cycles respectively.
For further details, we refer to the specification [Bei+20].

loop unrolling . Although unrolling the main loop within the
Sparkle permutation over 7 or 11 rounds results in a significant speed-
up (see Table 5.3) when using instruction cache (like the SiFive core
used in this work, see Section 5.2.3), this leads to significantly worse
results in the case of AEAD (see Table 5.2).

round constants . In this assembly-specific optimization, we
speed-up the permutation by increasing the space required. In every
round of the permutation, each of the six ARX-boxes uses the same
round constant in their computations. The idea is to avoid the loading
of the constants for the ARX-boxes in every round by loading and
saving these 6 constants in the registers before the transformation.
This comes with the cost of dedicating 6 registers to these constants.

122 assembly or optimized c for lwc on risc-v?

This optimization can be applied in the loop as well as in the un-
rolled variant of the implementation. In the unrolled implementation,
we further reduce the loading of round constants, since these 6 con-
stants are also being used as the round constants that are added to
the state every round. In the 7-round variant of the permutation, we
save the loading of the first 6 round constants and only have to load
the 7th constant. In the 11-round variant of the permutation, we only
have to load the 8th constant extra. The other three are already loaded
because there are only 8 round constants defined and the selection
index is calculated modulo 8. In the loop-unrolled implementation we
reduce the instruction count by 72, but have to use 6 more registers.

Table 5.2 shows the achieved speed-up for Schwaemm256-128, Ta-
ble 5.3 presents the achieved results for Esch256.

Table 5.2: Cycle counts for different Schwaemm256-128 implementations on the
SiFive board; encryption over a 128 bytes of message with 128 bytes
of associated data.

Platform Compiler Opt. Opt. C
Looped +
round cst

ASM

Loop-
unrolled
Opt. C

SiFive Clang-10 -O3 72286 43877 1059813
(−40%) (+94%)

SiFive Clang-9 -O3 73387 44558 1709958
(−40%) (+95%)

SiFive GCC -O3 71271 42634 1790566
(−40%) (+95%)

riscvOVPsim Clang-10 -O3 20842 20840 20277
(±0%) (−3%)

riscvOVPsim Clang-9 -O3 20842 20840 20277
(±0%) (−3%)

riscvOVPsim GCC -O3 20762 20161 20010
(−2%) (−3%)

VexRiscv GCC -O2 25464 27018 24769
(+6%) (−3%)

5.3.3 Saturnin

Saturnin [Can+20] is the NIST lightweight candidate designed by
Canteaut, Duval, Leurent, Naya-Plasencia, Perrin, Pornin, and Schrot-
tenloher. By building on top of a 256-bit block cipher with a 256-bit key,
they describe three constructions for hashing (Saturnin-Hash) and

5.3 optimized algorithms 123

Table 5.3: Esch256 cycle counts on each platform. The hashing operation hashes
128 bytes of data.

Platform Compiler Opt. Opt. C
Loop-

unrolled Opt.
C

SiFive Clang-10 -O3 62734 34664
(−44%)

SiFive Clang-9 -O3 63893 28952
(−54%)

SiFive GCC -O3 58193 33331
(−42%)

riscvOVPsim Clang-10 -O3 17439 16552
(−5%)

riscvOVPsim Clang-9 -O3 17439 16552
(−5%)

riscvOVPsim GCC -O2 17849 17231
(−3%)

VexRiscv GCC -O2 18874 17753
(−6%)

authenticated encryption of small (Saturnin-Short) and large data
segment (Saturnin-Cipher). This last AEAD scheme uses the counter
mode and a separate MAC.

We ported to our benchmark platform the reference implementation
and both the 32-bit optimized ªbs32º and ªbs32xº C implementa-
tions [Can+20, Section 3.4.2]. The ªbs32º and ªbs32xº implementations
both implement Saturnin in a 32× bitsliced fashion. Their difference
is that ªbs32º bitslices inside of blocks, whereas ªbs32xº bitslices across
blocks. When comparing the two bitsliced implementations, ªbs32º
showed a consistently better performance than the other, albeit some-
times with a small margin. We decided that ªbs32º would be the
preferred implementation to use on our platforms.

In all the implementations, we tweaked the code to make sure that
any constants would be loaded from SRAM, instead of (the relatively
slow) SPI flash. This considerably improved the performance of the
bitsliced implementations.

In the end, we see that the Optimized C implementation is consider-
ably faster than the reference implementation in terms of performance,
with generally a speed-up by a factor of 2. Another interesting property
from the results in Tables 5.4 and 5.5 is the performance stability of
the implementations across compilers. Where the ªbs32º performance

124 assembly or optimized c for lwc on risc-v?

Table 5.4: Saturnin-Hash cycle counts on each platform. The hashing opera-
tion hashes 128 bytes of data.

Platform Compiler Opt. Ref. bs32

SiFive Clang-10 -O3 49433 28199
(−43%)

SiFive Clang-9 -O3 52868 30483
(−42%)

SiFive GCC -O3 78110 30321
(−61%)

riscvOVPsim Clang-10 -O3 46946 27070
(−42%)

riscvOVPsim Clang-9 -O3 48785 27972
(−43%)

riscvOVPsim GCC -O3 76211 29030
(−61%)

VexRiscv GCC -O2 103325 32169
(−69%)

is very stableÐwith cycle counts generally varying less than 10%Ðthe
performance of the reference implementation varies a lot with different
compiler versions. Nonetheless, we see that newer compiler versions
seem to produce faster code.

Table 5.5 illustrates the fact that the greedy unrolling and inlining
by GCC with -O3 results in major speed-up on simulators. However
once tested on a physical device such as the SiFive development board
(Section 5.2.3), this results in a code too large for the 16KB cache,
inducing in a slowdown by a factor of 5.

5.3.4 Ascon

Ascon [Dob+16a] is a scheme proposed by Dobraunig, Eichlseder,
Mendel and Schläffer. It uses a very small 320-bit state which allows
it to fit in registers on most systems. The authors introduce multiple
variants of Ascon AEAD as well as a hashing scheme. We focus our
efforts on the Ascon-128 AEAD variant. We expect that our results
translate fairly well to the other variants and the hashing scheme as
they are very similar.

We use the Ascon C [Asc] repository as a baseline, more specifically
we use the reference, the 64-bit optimized, and the 32-bit interleaved
implementations as starting point for our optimizations.

5.3 optimized algorithms 125

Table 5.5: Saturnin-Cipher cycle counts on each platform. The cipher encrypts
128 AD bytes and 128 message bytes.

platform Compiler Opt. Ref. bs32 bs32x

SiFive Clang-10 -O3 121651 59368 68792
(−51%) (−43%)

SiFive Clang-9 -O3 106665 62743 91511
(−41%) (−14%)

SiFive GCC -O3 151428 60817 5210541
(−60%) (×34%)

SiFive GCC -Os 183464 65469 138187
(−64%) (−24%)

riscvOVPsim Clang-10 -O3 93184 55154 61077
(−41%) (−34%)

riscvOVPsim Clang-9 -O3 96540 55617 63767
(−42%) (−33%)

riscvOVPsim GCC -O3 145734 57366 75646
(−61%) (−48%)

VexRiscv GCC -O2 202226 65015 88278
(−68%) (−56%)

improved formula . First we optimize the inner permutation
by improving the Ascon S-box formula (Figure 5.1). We reduce the
number of required instructions from 22 to 17 and the number of tem-
porary registers from 5 to 3 at the cost of less potential for parallelism.
Instruction-level parallelism Ðsuch as out-of-order executionÐ is com-
mon in high-end CPUs but not so common in lightweight platforms
like our RISC-V targets. This optimization gives us a 10% speed-up
for both the assembly and Optimized C implementations (Table 5.6).

Table 5.6: Cycle counts for the different Ascon’s round functions over 6 rounds;
Compiled with Clang-10 and -O3.

Platforms C-ref Assembly Optimized
C

SiFive 832 750 750
(−10%) (−10%)

riscvOVPsim 830 748 748
(−10%) (−10%)

126 assembly or optimized c for lwc on risc-v?

Figure 5.1: These formulas compute the Ascon S-box in 17 operations (once the
duplicate operations are taken out); on indicates output bit n and in
indicates input bit n.

o0 ← i3 ⊕ i4 ⊕ (i1 ∨ (i0 ⊕ i2 ⊕ i4))

o1 ← i0 ⊕ i4 ⊕ ((i1 ⊕ i2) ∨ (i2 ⊕ i3))

o2 ← i1 ⊕ i2 ⊕ (i3 ∨ ¬i4)

o3 ← i1 ⊕ i2 ⊕ (i0 ∨ (i3 ⊕ i4))

o4 ← i3 ⊕ i4 ⊕ (i1 ∧ ¬(i0 ⊕ i4))

bit interleaving . We also compare the C implementation op-
timized for 32-bit interleaving. It performs the worst of all others
including the baseline implementation. Bit interleaving allows 32-bit
rotations to model 64-bit rotations efficiently, unfortunately our targets
does not support 32-bit rotations. We expect this implementation will
perform better when targeting RISC-V cores that come with the B
extension, which adds rotation instructions.

optimized 64 bits . Finally, we compare the C implementation
optimized for 64-bit processors. On RISC-V cores without the B ex-
tension, the 64-bit operations are compiled to 32-bit operations in
a straightforward manner and the compiler has no trouble with it.
As RISC-V does not support misaligned memory access, we had to
modify the code to handle the authentication tag.

While on the RISC-V OVP simulator the 64-bit optimized version is
7% faster than the baseline, testing it on the SiFive board reveals sig-
nificant slowdowns due to the code not fitting in the 16KB instruction
cache.

Our final implementation makes use of the improved S-box formula
in a 6-round unrolled Optimized C permutation. By folding the pro-
cessing of associated data and message we are able to reuse the code
and have to compiled code fit in the instruction cache. Applying these
modifications, we achieve our best results: 15% faster than the baseline
(Table 5.7).

5.3.5 Delirium

Elephant [Bey+19] is a family of lightweight authenticated encryption
schemes. The mode of Elephant is a nonce-based encrypt-then-MAC

construction, where encryption is performed using counter mode
based on permutation masked using LFSRs. One of the instances of
Elephant is Elephant-Keccak- f [200], also called Delirium, which

5.3 optimized algorithms 127

Table 5.7: Cycle counts for different Ascon implementations in OVP sim for
encrypting 128 bytes of message and 128 bytes of associated data;
compiled with Clang-10 and -O3.

Implementation OVP sim SiFive

ref. & default permutation 31990 32038

ref. & asm permutation 28988 29036
(−9%) (−9%)

ref. & inlined Optimized C perm. 27489 27703
(−14%) (−14%)

bit interleaved inline permutation 32001 1559691
(±0%) (×49%)

opt. 64-bit & default unrolled perm. 29646 1191702
(−7%) (×37%)

opt. 64-bit & asm permutation 29090 29170
(−9%) (−9%)

opt. 64-bit & fully unrolled Opt. C perm. 27589 809631
(−14%) (×25%)

opt. 64-bit & 6-round unrolled Opt. C perm. 27184 27271
(−15%) (−15%)

uses Keccak as its permutation primitive. Delirium has a state size of
200 bits and claimed a security level of 127 bits. We optimize Delirium

by exploiting Elephant ’s possibility for parallelization by using bit-
interleaving.

bit interleaving . In order to make full use of the 32-bit registers,
we combine four blocks of byte-sized elements into one block of 4-byte
elements. Thus, we can process four blocks at the same time and our
state representation changes to an array of 25 32-bit words (5-by-5-by-
32) with a total size of 800 bits. In this new representation, one block
amounts to four blocks in the standard representation.

There are two possible cases when transforming blocks before en-
crypting/decrypting to the new representation. The first and the easi-
est case is when the amount of blocks that need to be transformed is a
multiple of four. This means that all groups of four blocks consisting
of 8-bit words can be interleaved to make one block of 32-bit words.
The second case is when the amount of blocks is not a multiple of four.
Since the new representation needs four ªoldº blocks to transform into
one new block, we have to use padding blocks filled with zero values
to add to make the amount of blocks to a multiple of four.

After encryption/decryption, when transforming back to a byte
representation of the data, we have to de-interleave each interleaved

128 assembly or optimized c for lwc on risc-v?

32-bit block back to four blocks of bytes. Since it is possible that the
amount of original blocks was not a multiple of four, we need to make
sure none of the data from the added padding blocks gets joined in
the output data. This can be done by cutting off any output data which
exceeds the message-length variable.

As shown in Table 5.8, we note that shorter inputs perform worse in
the optimized implementation. This is because the effort of interleaving
data to process four blocks simultaneously is wasted if there are very
few blocks to process.

Table 5.8: Cycle counts for different Elephant-Keccak- f [200] implementations
on the SiFive board; encryption over a 32/64/128 bytes message with
32/64/128 bytes of associated data.

Platform Compiler
Message
length

Data
length

C-ref
Bit

interleaved

SiFive GCC 16 16 66541 73989
(+11%)

SiFive GCC 32 32 91837 74385
(−19%)

SiFive GCC 64 64 143181 74890
(−47%)

SiFive GCC 128 128 245100 113031
(−53%)

SiFive Clang-9 128 128 294643 160494
(−46%)

SiFive Clang-10 128 128 241975 145936
(−40%)

riscvOVPsim GCC 32 32 64651 66690
(+3%)

riscvOVPsim GCC 64 64 102138 66805
(−35%)

riscvOVPsim GCC 128 128 176086 101966
(−42%)

riscvOVPsim Clang-9 128 128 168313 106904
(−36%)

riscvOVPsim Clang-10 128 128 163973 103631
(−37%)

5.3 optimized algorithms 129

5.3.6 Xoodyak

Xoodyak [Dae+20], based on the Xoodoo permutation [Dae+18a;
Dae+18b], is a cryptographic scheme that is suitable for several
symmetric-key functions, including hashing, encryption, MAC com-
putation and authenticated encryption. Xoodoo, according to its au-
thors [Dae+18b], can be seen as a porting of the Keccak-p [Ber+13b;
Ber+13c] design approach to a Gimli-shaped [Ber+17a] state.

Xoodoo iteratively applies 12 rounds to a 384-bit state, which can be
treated as 3 horizontal planes, each one consisting of 4 parallel 32-bit
lanes. The choice of 12 rounds justifies a security claim in the hermetic
philosophy. The claimed security strength for Xoodyak is 128 bits.

An estimated lower bound for cycles taken by Xoodoo can be
calculated as follows. It requires 24 rotations, 37 xors, 12 ands, and
12 negs for a single round. With the exception of rotation (3 cycles),
all operations take 1 cycle. Thus, iterated over 12 rounds this totals to
1596 cycles.

lane complementing . The idea behind lane complementing,
first proposed in the Keccak implementation overview [Ber+13c], is
to reduce the number of neg instructions by complementing certain
lanes before the transformation.

In Xoodoo the state is ordered in 4 sheets, each containing 3 lanes
with a width of 32-bit. The χ layer computes 3 xor, 3 and and 3

neg operations for every sheet in the state. This sums up to 12 neg

operations per round and 144 neg operations in total. In the default
case, the χ transformation for every lane a[i] in a sheet, with 0 ≤
i ≤ 2 and index calculation modulo 3, can be calculated as shown in
equation (5.1). To highlight de neg

propagation, we use
of a instead of ¬a.a[i]← a[i]⊕ (a[i + 1] ∧ a[i + 2]) (5.1)

For example, we now want to complement lane a[2]. Thus, the equation
of lane a[0] gets rearranged as follows:

a[0]′ = a[0]⊕ (a[1] ∧ a[2]) = a[0]⊕ a[1] ∨ a[2] = a[0]⊕ (a[1] ∨ a[2]),

a[0]′ = a[0]⊕ (a[1] ∨ a[2]).

The complementation of a[2] results in the cancellation of the negation
of a[1], the switch from an and to an or operation and the comple-
ment of a[0]′. Now we calculate all three lanes of a sheet with the
complement of the lane a[2]← a[2]:

a[0]← a[0]′ = a[0]⊕ (a[1] ∨ a[2]),

a[1]← a[1]′ = a[1]⊕ (a[2] ∧ a[0]),

a[2]← a[2]′ = a[2]⊕ (a[0] ∧ a[1]).

130 assembly or optimized c for lwc on risc-v?

It can be observed that we only need one complementation for this
sheet, instead of three. For the computation of a[1], a[0] is comple-
mented to be positive, because a[0] was negated before. This example
of lane complementing comes with the cost of applying the input mask
a[2] and output mask a[0], a[2].

finding the lowest neg count. The possible transformations
of the boolean equations for a sheet are not fixed to one. Thus, there
are multiple boolean equations that are still logically congruent, but
may differ in the input and output mask. We want to find the boolean
equations and input mask with the lowest possible number of neg-
instructions. To simplify this problem, we set the boolean equations to
a fixed set and only care about the possible input patterns. Therefore,
we employ an algorithm for finding the minimum neg instruction
count for a certain set of boolean equations.

After the application of the algorithm, we obtain an input mask
and a sequence of boolean equations. This input mask is 2-round
invariant, meaning that the input mask is the always same after every
two rounds. Hence, it can be implemented as a loop and therefore
have a smaller code size. The obtained input mask P is the following
(denoted in x, y coordinates):

P = {(0, 0), (1, 0), (2, 0), (3, 0)}.

We reduce the number of neg operations to exactly one thrid over
12 rounds. The application of our input and output mask, each costs
4 neg operations. Due to a larger number of lanes in Keccak, Stoffe-
len [Sto19] achieved a reduction to 20%.

Lane complementing is not an assembly-specific optimization. As
shown in Tables 5.9 to 5.11, we achieve a very similar speed-up in
assembly and in C.

Table 5.9: Cycle counts for different implementations of Xoodyak in AEAD
mode GCC compiled with -O2 in riscvOVPsim for encrypting 128
bytes of message and 128 bytes of associated data.

Implementation riscvOVPsim

reference 105463

loop unrolled + lane complementing assembly 29574
(−71%)

loop unrolled + lane complementing Optimized C 28672
(−72%)

5.3 optimized algorithms 131

Table 5.10: Cycle counts for Xoodyak in hash mode on each platform, compiled
with -O3. The hashing operation hashes 128 bytes of data.

Platform Compiler Ref.
Unrolled & lane

comp.

SiFive Clang-10 81349 17963
(−78%)

SiFive Clang-9 88451 18865
(−79%)

SiFive GCC 82741 17063
(−79%)

riscvOVPsim Clang-10 18114 16845
(−7%)

riscvOVPsim Clang-9 18059 16898
(−6%)

riscvOVPsim GCC 23247 16614
(−29%)

VexRiscv GCC -O2 261678 38378
(−85%)

Table 5.11: Cycle counts for Xoodyak in AEAD mode on each platform, com-
piled with -O3, for encrypting 128 bytes of message and 128 bytes
of associated data.

Platform Compiler Ref.
unrolled & lane

comp.

SiFive Clang-10 103717 26246
(−75%)

SiFive Clang-9 112414 27392
(−76%)

SiFive GCC 103522 23238
(−78%)

riscvOVPsim Clang-10 25002 23429
(−6%)

riscvOVPsim Clang-9 25002 23429
(−6%)

riscvOVPsim GCC 29775 21668
(−28%)

VexRiscv GCC -O2 261678 38378
(−85%)

132 assembly or optimized c for lwc on risc-v?

5.3.7 AES

In [Sto19], Stoffelen proposes two assembly implementations of AES:
the first one is based on lookup tables, and the second one uses a
bitsliced approach.

with a lookup tables . When encrypting a single block of 16

bytes, multiple steps of the round function can be combined in a
lookup table, also called T-table by Daemen and Rijmen in [DR02].
Note that this type of implementation is usually vulnerable to cache
attacks [Ber05a; BM06; OST06]. Because none of our benchmarking
platforms have a data cache, we believe this implementation is likely
ªsafeº to use.

For his table-based implementation, Stoffelen makes use of the
baseline instructions described in [BS08]. Most of the proposed op-
timizations by Bernstein and Schwabe are not applicable due to the
small instruction set of the RISC-V architecture. The translation from
assembly to C using uint32_t to simulate registers is straightforward,
and the lookup table is converted to an array as uint32_t variable[].
The resulting benchmark shows no difference in timing between the
two approaches (see Table 5.12).

Table 5.12: Cycle counts for the Assembly of [Sto19] and its translation to C on
the SiFive board, compiled with Clang-10 and -O3.

Assembly Optimized C

Key schedule 342 342
(±0%)

1-block encryption 903 901
(±0%)

Note that if the table is declared as const, the compiler will place it
in the .rodata segment. While this change does not have any impact
on the verilator and the riscvOVPsim simulators, it induces a major
slowdown in the case of the SiFive board as the SPI flash is significantly
slower than the SRAM.

In order to prevent the compiler from messing with the pointer
arithmetic, data pointers are kept in the uint8_t* type. This forces us
to cast the pointer to uint32_t* before de-referencing to trigger the
compiler to use the lw instruction.

Y0 = RK[0]; T0 = (uint32_t*)(LUT1 + ((*X0 & 0xff) << 4)); Y0 = Y0 ^ *T0;
Y1 = RK[1]; T1 = (uint32_t*)(LUT1 + ((*X1 & 0xff) << 4)); Y1 = Y1 ^ *T1;
Y2 = RK[2]; T2 = (uint32_t*)(LUT1 + ((*X2 & 0xff) << 4)); Y2 = Y2 ^ *T2;
Y3 = RK[3]; T3 = (uint32_t*)(LUT1 + ((*X3 & 0xff) << 4)); Y3 = Y3 ^ *T3;

Code 5.1: Code fragment of AES encryption

5.3 optimized algorithms 133

using a bitsliced approach . When using AES in CTR or GCM
mode, multiple blocks can be processed in parallel using a bitsliced
implementation [RSD06; KS09; Kön08]. This strategy is often more
efficient and avoids lookup tables, making the implementation more
resistant against timing attacks.

By using the same approach as with lookup tables, we translate the
assembly from [Sto19] back into C. While the key schedule it is slightly
slower, this translation approach gives us a 4% speed-up in the case of
the encryption in CTR mode as illustrated in Table 5.13.

Table 5.13: Cycle counts for the Assembly of [Sto19] and its translation to C on
the SiFive board, compiled with Clang-10 -O3.

Assembly Optimized C

Key schedule 1248 1256
(±0%)

Encryption of 128 blocks 260695 249813
(−4%)

5.3.8 Keccak

We now have a look at the Keccak- f family permutationÐdesigned by
Bertoni, Daemen, Peeters and Van Assche [Ber+13b]Ð, more precisely
its 1600-bit instance found in the SHA-3 standard by NIST [Dwo15].
The permutation is used in multiple cryptographic constructions in-
cluding future post-quantum candidates such as FrodoKEM [Bos+16],
NewHope [Alk+16], SPHINCS+ [Ber+19] and others.

Stoffelen [Sto19] provides us with another optimized implementa-
tion for RISC-V inspired by the Keccak implementation overview [Ber+13c].
Keccak- f [1600] works on a state composed of 25 64-bit lanes, in other
words a total of 50 32-bits words. This is more than the number of reg-
ister made available by the ISA, preventing the state from completely
fitting in the registers. By using bit interleaving and other techniques,
Stoffelen manages to reduce the number of cycles used.

We take his implementation and translate it back to C. We compile
with GCC and -Os instead of -O2 or -O3 to get marginally faster results
than the assembly implementation in [Sto19] (see Table 5.14).

Table 5.14: Cycle counts for the Assembly of Keccak [Sto19] and its translation
to C on the SiFive board, compiled with GCC -Os.

Assembly Optimized C

Keccak- f [1600] 13731 13336
(−3%)

134 assembly or optimized c for lwc on risc-v?

5.4 comparison with other implementations and addi-
tional benchmarks

Other implementations of lightweight candidates are publicly avail-
able; we chose to compare our work against the repository of Weather-
ley2 [Wea20] as their implemented are ªfocused on good performance in
plain C on 32-bit embedded microprocessorsº.

As Clang-10 generally produces faster results than GCC with -O3, we
used it to compile and benchmark every optimized C implementation
provided by Weatherley. We measure the cycle counts for encryption
of AEAD schemes for 128-byte messages with 128 bytes of associated
data, and provide our results in Section 5.A.

In Table 5.15, we summarize the performance of our software and
Weatherley’s implementations.

Table 5.15: Cycle counts for AEAD mode on the SiFive and riscvOVPsim plat-
form, compiled with Clang-10 -O3, for encrypting 128 bytes of
message and 128 bytes of associated data.

Algorithm Weatherley Our results

OVP SiFive OVP SiFive

Gimli 37596 38530 35690 35853
(−5%) (−7%)

Schwaemm256-128 20842 72286 20277 43877
(−3%) (−40%)

Saturnin 55367 152803 55154 59368
(−1%) (−61%)

Ascon 41228 42562 27184 27271
(−34%) (−36%)

Delirium 110171 765235 103631 145936
(−6%) (−81%)

Xoodyak 18852 64869 23451 26246
(+24%) (−60%)

While on the OVP simulator most of our implementations pro-
duce just slightly better results with an average at −4% cycle counts;
when using the SiFive board, the unrolled implementation by Weath-
erley suffers heavily from the 16KB instruction cache. This makes our
RISC-V-optimized code on average 47.5% faster.

2 https://github.com/rweather/lightweight-crypto, commit 52c8281

https://github.com/rweather/lightweight-crypto

5.5 the risc-v bitmanip extension 135

5.5 the risc-v bitmanip extension

While still being in development, the bit manipulation extension3 (B)
allows interesting optimizations. We present Table 5.16 the impact and
possible gains by enabling such extension.

However, the provided instructions in this extension are still a
work in progress; Therefore, some of them and their specification
may change before being accepted as a standard by the RISC-V
Foundation. The presented performance figures were compiled using
the riscv-bitmanip branch of the GCC compiler4 using the flags -O2

-mcmodel=medany -march=rv64gcb -mabi=lp64d and calculated with
the Spike RISC-V ISA Simulator5.

primitive variant w/o B ext. with B ext.

Gimli Hash C-ref. 27628 22688
(−18%)

Gimli Hash C-opt. 26771 22080
(−18%)

Gimli Hash 8-round C-opt. 22224 16618
(−25%)

Esch256 C-ref. 20605 13891
(−33%)

Esch256 loop unrolled 17585 11586
(−34%)

AES LUT C-opt. 3647 1578
(−57%)

AES CTR-Bitsliced C-opt. 1509 1431
(−5%)

saturnin C-ref. 83516 80866
(−3%)

saturnin bs32 33087 30943
(−6%)

Xoodyak C-ref. 28492 22440
(−21%)

Xoodyak unrolled 19123 14169
& complementing (−26%)

Keccak- f [1600] C-opt. 14633 12402
(−15%)

Keccak- f [200] C-opt. 9143 6119
(−33%)

Table 5.16: Cycle counts comparison for some primitives using the RISC-V bit
manipulation extension.

3 https://github.com/riscv/riscv-bitmanip, commit a05231d
4 https://github.com/riscv/riscv-gcc/tree/riscv-bitmanip, commit 8b86205

5 https://github.com/riscv/riscv-isa-sim, commit 958dcdc

https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-gcc/tree/riscv-bitmanip
https://github.com/riscv/riscv-isa-sim

136 assembly or optimized c for lwc on risc-v?

5.6 conclusion

We described how multiple lightweight NIST candidates such as Gimli,
Sparkle, Saturnin, Ascon, Delirium, and Xoodyak can be efficiently
implemented. With strategies such as loop unrolling, we are able to
write assembly code close to the lower bound given by the number
instructions arithmetic. By translating our assembly implementation
back into C, we get the compiler to further optimize our results.

Using the AES and Keccak assembly implementations from Stoffe-
len [Sto19], we also show that our approach is applicable to existing
code bases, and may provide slightly improved results while increasing
the readability and maintainability of the code.

We use the HiFive1 development board to illustrate that algorithms
need to be tested on physical devices in order to guarantee useful
optimized implementations (Table 5.17). Although strategies such as
fully unrolled loops may work nicely in simulated environments such
as riscvOVPsim; they will fail at length on physical devices with e. g.,
a 16KB instruction cache.

As the NIST lightweight competition is currently taking place, we
hope our results will be found useful by the candidates’ implementors
and designers.

A P P E N D I X O F C H A P T E R 5

In the following, we give our benchmark of Weatherley’s implementa-
tions [Wea20] of the lightweight candidates.

5.a benchmark of other implementations

RISC-V hardware availability is scarce and most implementations are
based on simulators. Having the availability of bothÐboard and simu-
lator, we benchmark the work of Weatherley [Wea20] (commit 52c8281)
and present our measures in Table 5.17. As such, we illustrate the need
of testing implementations on boards and constrained environment.

Table 5.17: Cycle counts for different ciphers implementations clang-10 com-
piled with -O3 for encrypting 128 bytes of message and 128 bytes of
associated data.

Implementation riscvOVPSim SiFive

ace_aead_encrypt 206040 1959318
(+851%)

ascon128_aead_encrypt 41228 42562
(+3%)

ascon128a_aead_encrypt 28284 29457
(+4%)

ascon80pq_aead_encrypt 41264 42639
(+3%)

comet_128_cham_aead_encrypt 21648 22570
(+4%)

comet_64_speck_aead_encrypt 24429 25515
(+4%)

comet_64_cham_aead_encrypt 60197 61552
(+2%)

drygascon128_aead_encrypt 96365 98194
(+2%)

drygascon256_aead_encrypt 120862 123710
(+2%)

estate_twegift_aead_encrypt 50051 855204
(+1609%)

dumbo_aead_encrypt 1365382 2927910
(+114%)

137

138 assembly or optimized c for lwc on risc-v?

jumbo_aead_encrypt 1465147 3265908
(+123%)

delirium_aead_encrypt 110171 763144
(+593%)

forkae_paef_64_192_aead_encrypt 543575 818122
(+51%)

forkae_paef_128_192_aead_encrypt 349468 550627
(+58%)

forkae_paef_128_256_aead_encrypt 349485 510584
(+46%)

forkae_paef_128_288_aead_encrypt 457833 642481
(+40%)

forkae_saef_128_192_aead_encrypt 350409 523108
(+49%)

forkae_saef_128_256_aead_encrypt 350767 512754
(+46%)

gift_cofb_aead_encrypt 28277 28642
(+1%)

gimli24_aead_encrypt 37596 38530
(+2%)

grain128_aead_encrypt 71378 71687
(−0%)

hyena_aead_encrypt 37317 136055
(+265%)

isap_keccak_128a_aead_encrypt 243243 640729
(+163%)

isap_ascon_128a_aead_encrypt 204619 222540
(+9%)

isap_keccak_128_aead_encrypt 1190410 2467483
(+107%)

isap_ascon_128_aead_encrypt 585890 605107
(+3%)

knot_aead_128_256_encrypt 51298 224600
(+338%)

knot_aead_128_384_encrypt 30982 102381
(+230%)

knot_aead_192_384_encrypt 69190 228613
(+230%)

knot_aead_256_512_encrypt 97648 266707
(+173%)

5.A benchmark of other implementations 139

lotus_aead_encrypt 84658 1006509
(+1089%)

locus_aead_encrypt 86693 1008575
(+1063%)

orange_zest_aead_encrypt 84917 159953
(+88%)

oribatida_256_aead_encrypt 104129 106399
(+2%)

oribatida_192_aead_encrypt 118296 121481
(+3%)

photon_beetle_128_aead_encrypt 157558 298030
(+89%)

photon_beetle_32_aead_encrypt 591344 1124306
(+90%)

pyjamask_128_aead_encrypt 287809 316105
(+10%)

pyjamask_masked_128_aead_encrypt 1407899 1602733
(+14%)

pyjamask_96_aead_encrypt 284920 308484
(+8%)

pyjamask_masked_96_aead_encrypt 1391787 1500329
(+8%)

romulus_n1_aead_encrypt 213113 218841
(+3%)

romulus_n2_aead_encrypt 197988 201165
(+2%)

romulus_n3_aead_encrypt 166744 309093
(+85%)

romulus_m1_aead_encrypt 282764 325705
(+15%)

romulus_m2_aead_encrypt 270063 291863
(+8%)

romulus_m3_aead_encrypt 231497 238422
(+3%)

skinny_aead_m1_encrypt 248751 251707
(+1%)

skinny_aead_m2_encrypt 248747 251677
(+1%)

skinny_aead_m3_encrypt 248721 251578
(+1%)

140 assembly or optimized c for lwc on risc-v?

skinny_aead_m4_encrypt 248717 251548
(+1%)

skinny_aead_m5_encrypt 211871 215308
(+2%)

skinny_aead_m6_encrypt 211820 215179
(+2%)

schwaemm_256_128_aead_encrypt 20842 72286
(+247%)

schwaemm_128_128_aead_encrypt 23918 111207
(+365%)

schwaemm_192_192_aead_encrypt 28112 98569
(+251%)

schwaemm_256_256_aead_encrypt 30452 107680
(+254%)

spix_aead_encrypt 93090 348608
(+274%)

sundae_gift_0_aead_encrypt 44214 57268
(+30%)

sundae_gift_64_aead_encrypt 45838 58952
(+29%)

sundae_gift_96_aead_encrypt 45874 58996
(+29%)

sundae_gift_128_aead_encrypt 45906 58996
(+29%)

saturnin_aead_encrypt 55367 152798
(+176%)

saturnin_short_aead_encrypt 42 55
(+31%)

spoc_128_aead_encrypt 69789 839487
(+1103%)

spoc_64_aead_encrypt 113672 1651442
(+1353%)

spook_128_512_su_aead_encrypt 34778 285992
(+722%)

spook_128_384_su_aead_encrypt 46390 195868
(+322%)

spook_128_512_mu_aead_encrypt 34792 285764
(+721%)

spook_128_384_mu_aead_encrypt 46409 195708
(+322%)

5.A benchmark of other implementations 141

subterranean_aead_encrypt 127707 132338
(+4%)

tiny_jambu_128_aead_encrypt 34776 37952
(+9%)

tiny_jambu_192_aead_encrypt 37590 40789
(+9%)

tiny_jambu_256_aead_encrypt 40394 43865
(+9%)

wage_aead_encrypt 788038 14336632
(+1719%)

xoodyak_aead_encrypt 18852 64869
(+244%)

6C RY P TA N A LY S I S O F M O R U S

In this chapter, we show the existence of linear biases in the output of
the authenticated encryption scheme Morus. More precisely, we show
that when encrypting a fixed plaintext multiple times, a linear correla-
tion exists between some bits at the output of the cipher. Moreover, the
bias depends purely on the plaintext, and not on the secret key of the
cipher. In principle, this property could be used to recover unknown
bits of a plaintext encrypted a large number of times, provided an
initial segment of the plaintext is known.

This chapter is organized as follows. After a short introduction
(Section 6.1) we provide a brief description of Morus in Section 6.2.
In Section 6.3, we introduce MiniMorus, an abstraction of Morus

based on a certain class of rotational symmetries. We analyze this
simplified scheme in Section 6.4 and provide a ciphertext-only linear
approximation with a weight of 16. We then extend our result to the
full scheme in Section 6.5, showing a correlation in the keystream over
5 steps, and discuss the implications of our observation for the security
of Morus in Section 6.6. In Section 6.7, we present our results on
the security of Morus with round-reduced initialization (in a nonce-
misuse setting) or finalization. We conclude in Section 6.8.

6.1 introduction

To address the growing need for modern authenticated encryption
designs for different application scenarios, the Competition for Authen-
ticated Encryption: Security, Applicability, and Robustness (CAESAR)
was launched in 2013 [CAE13]. The goal of this competition is to se-
lect a final portfolio of AEAD designs for three different use-cases: (1)
lightweight hardware characteristics, (2) high-speed software perfor-
mance, and (3) robustness. The competition attracted 57 first-round
submissions, 7 of which were recently selected as finalists in the fourth
selection round.

Morus is one of the three finalists for use-case (2), together with
OCB [KR14] and AEGIS [WP16; WP13]. This family of authenticated
ciphers by Wu and Huang [WH16] provides three main variants:
Morus-640 with a 128-bit key and Morus-1280 with either a 128-bit or
a 256-bit key. The design approach is reminiscent of classical stream
cipher designs and continuously updates a relatively large state with
a few fast operations. Morus can be efficiently implemented in both
software and hardware; in particular, the designers claim that the soft-
ware performance even surpasses AES-GCM implementations using

143

144 cryptanalysis of morus

Intel’s AES-NI instructions, and that Morus is the fastest authenticated
cipher not using AES-NI [WH16].

related work . In the Morus submission document, the designers
discuss the security of Morus against several attacks, including alge-
braic, differential, and guess-and-determine attacks. The main focus
is on differential properties, and not many details are given for other
attack vectors. In third-party analysis, Mileva et al. [MDV15] propose
a distinguisher in the nonce-reuse setting and practically evaluate the
differential behavior of toy variants of Morus. Shi et al. [Shi+16] ana-
lyze the differential properties of the finalization reduced to 2 out of
10 steps, but find no attacks. Dwivedi et al. [Dwi+16] discuss the appli-
cability of SAT solvers for state recovery, but the resulting complexity
of 2370 for Morus-640 is well beyond the security claim. Dwivedi
et al. [DMW17] also propose key-recovery attacks for Morus-1280 if
initialization is reduced to 3.6 out of 16 steps, and discuss the security
of Morus against internal differentials and rotational cryptanalysis.
Salam et al. [Sal+17] apply cube attacks to obtain distinguishers for
up to 5 out of 16 steps of the initialization of Morus-1280 with neg-
ligible complexity. Additionally, Kales et al. [KEM17] and Vaudenay
and Vizár [VV17] independently propose state-recovery and forgery
attacks on Morus in a nonce-misuse setting with negligible data and
time complexities. Finally, a keystream correlation similar in nature to
our main attack was uncovered by Minaud [Min14] on the authenti-
cated cipher AEGIS [WP16; WP13], another CAESAR finalist, which
shares the same overall structure as Morus, but uses a very different,
AES-based state update function.

our contributions . Our main contribution is a keystream dis-
tinguisher on full Morus-1280, built from linear approximations of its
core StateUpdate function. In addition, we provide results for round-
reduced Morus, targeting both the initialization or finalization phases
of the cipher.

In more detail, our main result is a linear approximation [Mat93;
MY92] linking plaintext and ciphertext bits spanning five consecutive
encryption blocks. Moreover, the correlation does not depend on the
secret key of the cipher. In principle, this property could be used
as a known-plaintext distinguisher, or to recover unknown bits of a
plaintext encrypted a large number of times. For Morus-1280 with
256-bit keys, the linear correlation is 2−76 and can be exploited using
about 2152 encrypted blocks.

To the best of our knowledge, this is the first attack on full Morus in
the nonce-respecting setting. We note that rekeying does not prevent
the attack: the biases are independent of the secret encryption key and
nonce, and can be exploited for plaintext recovery as long as a given
plaintext segment is encrypted sufficiently often, regardless of whether
each encryption uses a different key. A notable feature of the linear

6.2 preliminaries 145

trail underpinning our attack is also that it does not depend on the
values of rotation constants: a very similar trail would exist for most
choices of round constants.

To obtain this result, we propose a simplified abstraction of Morus,
called MiniMorus. MiniMorus takes advantage of certain rotational
symmetries in Morus and simplifies the description and analysis of
the attack. We then show how the attack can be extended from Min-
iMorus to the real Morus. To confirm the validity of our analysis,
we practically verified the correlation of the full linear trail for Mini-
Morus, as well as the correlation of trail fragments for the full Morus.
Our analysis is also backed by a symbolic evaluation of the full trail
equation and its correlation on all variants of Morus.

In addition to the previous attack on full Morus, we provide two
secondary results: (1) we analyze the security of Morus against forgery
attacks with round-reduced finalization; and (2) we analyze its security
against key recovery in a nonce-misuse setting, with round-reduced
initialization. While this extra analysis does not threaten full Morus, it
complements the main result to provide a better overall understanding
of the security of Morus. More precisely, we present a forgery attack
for round-reduced Morus-1280 with success probability 2−88 for a
128-bit tag if the finalization is reduced to 3 out of 10 steps. This nonce-
respecting attack is based on a differential analysis of the padding rule.
The second result targets round-reduced initialization with 10 out of
16 steps, and extends a state-recovery attack (which can be mounted
e. g., in a nonce-misuse setting) into a key-recovery attack.

6.2 preliminaries

Morus is a family of authenticated ciphers designed by Wu and
Huang [WH16]. An instance of Morus is parameterized by a secret key
K. During encryption, it takes as input a plaintext message M, a nonce
N, and possibly some associated data A, and outputs a ciphertext
C together with an authentication tag T. In this section, we provide
a brief description of Morus and introduce the notation for linear
approximations.

6.2.1 Specification of Morus

The Morus family supports two internal state sizes: 640 and 1280

bits, referred to as Morus-640 and Morus-1280, respectively. Three
parameter sets are recommended: Morus-640 supports 128-bit keys
and Morus-1280 supports either 128-bit or 256-bit keys. The tag size
is 128 bits or shorter. The designers strongly recommend using a 128-
bit tag. With a 128-bit tag, integrity is claimed up to 128 bits and
confidentiality is claimed up to the number of key bits (Table 6.1).

146 cryptanalysis of morus

Table 6.1: Security goals of Morus.

Confidentiality (bits) Integrity (bits)

Morus-640-128 128 128

Morus-1280-128 128 128

Morus-1280-256 256 128

state . The internal state of Morus is composed of five q-bit registers
Si, i ∈ {0, 1, 2, 3, 4}, where q = 128 for Morus-640 and q = 256 for
Morus-1280. The internal state of Morus may be represented as
S0∥S1∥S2∥S3∥S4.

Registers are themselves divided into four q/4-bit words. Through-
out the chapter, we denote the word size by w = q/4, i. e., w = 32 for
Morus-640 and w = 64 for Morus-1280. As a result, an efficient im-
plementation of Morus will represent the state with 5 vector registers,
making use of SSE and AVX2 instructions: __m128i and __mm256i for
respectively the 640-bit and 1280-bit version.

The encryption process of Morus consists of four parts: initialization,
associated data processing, encryption, and finalization. During the
initialization phase, the value of the state is initialized using a key and
nonce. The associated data and the plaintext are then processed block
by block. Then the internal state undergoes the finalization phase,
which outputs the authentication tag.

Every part of this process relies on iterating the StateUpdate func-
tion at the core of Morus. Each call to the StateUpdate function is
called a step. The internal state at step t is denoted by St

0∥St
1∥St

2∥St
3∥St

4,
where t = −16 before the initialization and t = 0 after the initializa-
tion.

the StateUpdate function. StateUpdate takes as input the in-
ternal state St = St

0∥St
1∥St

2∥St
3∥St

4 and an additional q-bit value mt

(recall that q is the size of a register), and outputs an updated internal
state.
StateUpdate is composed of 5 rounds with similar operations. The

additional input mt is used in rounds 2 to 5, but not in round 1. Each
round uses the bit-wise rotation (left circular shift) operation inside
word, denoted ≪w in the following and Rotl_xxx_yy in the design
document. It divides a q-bit register value into 4 words of w = q/4
bits, and performs a rotation on each w-bit word. The bit-wise rotation
constants bi for round i are defined in Table 6.2. Additionally, each
round uses rotations on a whole q-bit register by a multiple of the word
size, denoted ≪ in the following and <<< in the design document.
The word-wise rotation constants b′i are also listed in Table 6.2.

6.2 preliminaries 147

Table 6.2: Rotation constants bi for ≪w and b′i for ≪ in round i of Morus.

Bit-wise rotation ≪w Word-wise rotation ≪

b0 b1 b2 b3 b4 b′0 b′1 b′2 b′3 b′4

Morus-640 5 31 7 22 13 32 64 96 64 32

Morus-1280 13 46 38 7 4 64 128 192 128 64

St+1 ← StateUpdate(St, mt) is defined as follows, where · denotes Here we prefer the
use of · instead of ∧
to strengthen the
link with the bitwise
multiplication.

bit-wise and, ⊕ is bit-wise xor, and mi is defined depending on the
context:

Round 1: St+1
0 ← (St

0 ⊕ (St
1 · St

2)⊕ St
3) ≪w b0, St

3 ← St
3 ≪ b′0.

Round 2: St+1
1 ← (St

1 ⊕ (St
2 · St

3)⊕ St
4 ⊕mi) ≪w b1, St

4 ← St
4 ≪ b′1.

Round 3: St+1
2 ← (St

2 ⊕ (St
3 · St

4)⊕ St
0 ⊕mi) ≪w b2, St

0 ← St
0 ≪ b′2.

Round 4: St+1
3 ← (St

3 ⊕ (St
4 · St

0)⊕ St
1 ⊕mi) ≪w b3, St

1 ← St
1 ≪ b′3.

Round 5: St+1
4 ← (St

4 ⊕ (St
0 · St

1)⊕ St
2 ⊕mi) ≪w b4, St

2 ← St
2 ≪ b′4.

initialization. The initialization of Morus-640 starts by loading
the 128-bit key K128 and the 128-bit nonce N128 into the state together
with constants c0, c1:

S−16
0 = N128,

S−16
1 = K128,

S−16
2 = ‘1128’,

S−16
3 = c0,

S−16
4 = c1.

Then, StateUpdate(St, 0) is iterated 16 times for t = −16,−15, . . . ,−1.
Finally, the key is xored into the state again with S0

1 ← S0
1 ⊕ K128.

The initialization of Morus-1280 differs slightly due to the difference
in register size and the two possible key sizes, and uses either K =
K128∥K128 (for Morus-1280-128) or K = K256 (for Morus-1280-256) to
initialize the state:

S−16
0 = N128 ∥ ‘0128’,

S−16
1 = K,

S−16
2 = ‘1256’,

S−16
3 = ‘0256’,

S−16
4 = c0 ∥ c1.

After iterating StateUpdate 16 times, the state is updated with S0
1 ←

S0
1 ⊕ K.

148 cryptanalysis of morus

associated data processing . After initialization, the associated
data A is processed in blocks of q ∈ {128, 256} bits. For the padding,
if the last associated data block is not a full block, it is padded to q bits
with zeroes. If the length of A, denoted by |A|, is 0, then the associated
data processing phase is skipped; else, the state is updated as

St+1 ← StateUpdate(St, At) for t = 0, 1, . . . , ⌈|A|/q⌉ − 1.

encryption. Next, the message is processed in blocks Mt of q ∈
{128, 256} bits to update the state and produce the ciphertext blocks
Ct. If the last message block is not a full block, a string of 0’s is used to
pad it to 128 or 256 bits for Morus-640 and Morus-1280, respectively,
and the padded full block is used to update the state. However, only
the partial block is encrypted. Note that if the message length denoted
by |M| is 0, encryption is skipped. Let u = ⌈|A|/q⌉ and v = ⌈|M|/q⌉.
The following is performed for t = 0, 1, . . . , v− 1:

Ct ← Mt ⊕ Su+t
0 ⊕ (Su+t

1 ≪ b′2)⊕ (Su+t
2 · Su+t

3),

Su+t+1 ← StateUpdate(Su+t, Mt).

finalization. The finalization phase generates the authentication
tag T using 10 more StateUpdate steps. We only discuss the case
where T is not truncated. The associated data length and the message
length are used to update the state:

1. L← |A| ∥ |M| for Morus-640 or
L← |A| ∥ |M| ∥ 0128 for Morus-1280,
where |A|, |M| are represented as 64-bit integers.

2. Su+v
4 ← Su+v

4 ⊕ Su+v
0 .

3. For t = u + v, u + v + 1, . . . , u + v + 9,
compute St+1 ← StateUpdate(St, L).

4. T = Su+v+10
0 ⊕ (Su+v+10

1 ≪ b′2)⊕ (Su+v+10
2 · Su+v+10

3),
or the least significant 128 bits of this value in case of Morus-
1280.

6.2.2 Notation

In the following, we use linear approximations [Mat93] that hold with
probability Pr(E) = 1

2 + ε, i. e., they are biased with bias ε. The correla-
tion =̂ (E) of the approximation and its weight weight(E) [Dae95] are
defined as

=̂ (E) := 2 Pr(E)− 1 = 2ε ,

weight(E) := − log2 | =̂ (E)| ,

where log2() denotes logarithm in base 2. By the Piling-Up Lemma,
the correlation (resp. weight) of an xor of independent variables is

6.3 rotational invariance and MiniMorus 149

equal to the product (resp. sum) of their individual correlations (resp.
weights) [Mat93; Dae95].

We also recall the following notation from the previous section,
where an encryption step refers to one call to the StateUpdate function:

Ct : the ciphertext block output during the t-th encryption step.

Ct
j : the j-th bit of Ct, with Ct

0 being the rightmost bit.

St
i : the i-th register at the beginning of t-th encryption step.

St
i,j : the j-th bit of St

i , with St
i,0 being the rightmost bit.

In the above notation, bit positions are always taken modulo the
register size q, i. e., q = 128 for Morus-640 and q = 256 for Morus-
1280.

For simplicity, in the remainder, the 0-th encryption step will often
denote the encryption step where our linear trail starts. Any encryption
step could be chosen for that purpose, as long as at least four more
encryption steps follow. In particular the 0-th encryption step from the
perspective of the trail does not have to be the first encryption step
after initialization.

6.3 rotational invariance and MiniMorus

To simplify the description of the attack, we assume all plaintext
blocks are zero. This assumption will be removed in Section 6.5.3,
where we will show that plaintext bits only contribute linearly to the
trail. Recall that the inner state of the cipher consists of five 4w-bit
registers S0, . . . , S4, each containing four w-bit words.

6.3.1 Rotationally Invariant Linear Combinations

We begin with a few observations about the StateUpdate function.
Besides xor and and operations, the StateUpdate function uses two
types of bit rotations:

1. bit-wise rotations perform a circular shift on each word within a
register;

2. word-wise rotations perform a circular shift on a whole register.

The second type of rotation always shifts registers by a multiple of
the word size w. This amounts to a (circular) permutation of the
words within the register: for example, if a register contains the words
(A, B, C, D), and a word-wise rotation by w bits to the left is performed,
then the register now contains the words (B, C, D, A).

To build our linear trail, we start with a linear combination of bits
within a single register.

150 cryptanalysis of morus

definition 6 .3 .1 (rotational invariance). Recall that w de-
notes the word size in bits, and 4w is the size of a register. A linear combina-
tion of the form:

St
i,j(0) ⊕ St

i,j(1) ⊕ · · · ⊕ St
i,j(k)

is said to be rotationally invariant iff the set of bits St
i,j(0), . . . , St

i,j(k) is left
invariant by a circular shift by w bits; that is, iff:

{j(i) : i ≤ k} = {j(i) + w mod 4w : i ≤ k}.

Example. The following linear combination is rotationally invariant
for Morus-640, i. e., w = 32:

St
0,0 ⊕ St

0,32 ⊕ St
0,64 ⊕ St

0,96. (6.1)

This definition naturally extends to a linear combination across
multiple registers, and also across ciphertext blocks. The value of such
a linear combination is unaffected by word-wise rotations, since those
rotations always shift registers by a multiple of the word size. On
the other hand, since bit-wise rotations always shift all four words
within a register by the same amount, bit-wise rotations preserve the
rotational invariance property. Moreover, the xor of two rotationally
invariant linear combinations is also rotationally invariant ; and the
same holds for the and operation (if we extend the symmetric property
to non-linear combinations in the natural way).

This naturally leads to the idea of building a linear trail using only
rotationally invariant linear combinations, which is what we are going
to do. As a result, the effect of word-wise rotations can be ignored.
Moreover, since all linear combinations we consider are going to be
rotationally invariant, they can be described by truncating the linear
combination to the first word of a register. Indeed, an equivalent way of
saying a linear combination is rotationally invariant, is that it involves
the same bits in each word within a register. For example, in the case
of Eq. (6.1) above, the four bits involved are the first bit of each of the
four words.

6.3.2 MiniMorus

In fact, we can go further and consider a reduced version of Morus

where each register contains a single word instead of four. The
StateUpdate function is unchanged, except for the fact that word-
wise rotations are removed: see Figure 6.1. We call these reduced
versions MiniMorus-640 and MiniMorus-1280, for Morus-640 and
Morus-1280 respectively. Since registers in MiniMorus contain a sin-
gle word, bit-wise and word-wise rotations are the same operation;
for simplicity we write ≪ for bit-wise rotations (the word-wise one
being the identity).

6.4 linear trail for MiniMorus 151

Since the trail we are building is relatively complex, we will first
describe it on MiniMorus. We will then extend it to the full Morus

via the previous rotational invariance property.

·
M

C
≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

Figure 6.1: MiniMorus state update function.

6.4 linear trail for MiniMorus

In this section, we describe how we build a trail for MiniMorus, then
compute its correlation and validate the correlation experimentally.

6.4.1 Overview of the Trail

To build a linear trail for MiniMorus, we combine the following five
trail fragments αt

i , βt
i , γt

i , δt
i , εt

i, where the subscript i denotes a bit
position, and the superscript t denotes a step number:

• αt
i approximates (one bit of) state word S0 using the ciphertext;

• βt
i approximates S1 using S0 and the ciphertext;

• γt
i approximates S4 using two approximations of S1 in consecu-

tive steps;
• δt

i approximates S2 using two approximations of S4 in consecu-
tive steps;

• εt
i approximates S0 using two approximations of S2 in consecu-

tive steps.

152 cryptanalysis of morus

The trail fragments are depicted in Figure 6.2. In all cases except
αt

i , the trail fragment approximates a single and gate by zero, which
holds with probability 3/4, and hence the trail fragment has weight 1.
In the case of αt

i , two and gates are involved; however the two gates
share an entry in common, and in both cases the other entry also has a
linear contribution to the trail, which results in an overall contribution
of the form (see [AR16, Sec. 3.3])

x · y⊕ x · z⊕ y⊕ z = (x⊕ 1) · (y⊕ z).

As a result, the trail fragment αt
i also has a weight of 1. Another way

of looking at this phenomenon is that the trail holds for two different
approximations of the and gates: the alternative approximation is
depicted by a dashed line on Figure 6.2.

The way we are going to use each trail fragment may be summarized
as follows, where in each case, elements to the left of the arrow→ are
used to approximate the element on the right of the arrow:

αt
i : Ct

i → St+1
0,i+b0

βt
i : Ct

i , St
0,i → St

1,i

γt
i : St

1,i, St+1
1,i+b1

→ St
4,i

δt
i : St

4,i, St+1
4,i+b4

→ St+1
2,i

εt
i : St

2,i, St+1
2,i+b2

→ St+1
0,i .

In more detail, the idea is that by using αt
i , we are able to approx-

imate a bit of S0 using only a ciphertext bit. By combining αt
i with

βt+1
i+b0

, we are then able to approximate a bit of S1 (at step t + 1) using
only ciphertext bits from two consecutive steps. Likewise, γt

i allows
us to ªjumpº from S1 to S4, i. e., by combining αt

i with βt
i and γt

i with
appropriate choices of parameters t and i for each, we are able to
approximate one bit of S4 using only ciphertext bits. Notice however
that γt

i requires approximating S1 in two consecutive steps; and so the
previous combination requires using αt

i and βt
i twice at different steps.

In the same way, δt
i allows us to jump from S4 to S2; and εt

i allows
jumping from S2 back to S0. Eventually, we are able to approximate
a bit of S0 using only ciphertext bits via the combination of all trail
fragments αt

i , βt
i , γt

i , δt
i , and εt

i.
However, the same bit of S0 can also be approximated directly by

using αt
i at the corresponding step. Thus, that bit can be linearly ap-

proximated from two different sides: the first approximation uses a
combination of all trail fragments, and involves successive approxima-
tions of all state registers (except S3) spanning several encryption steps,
as explained in the previous paragraph. The second approximation
only involves using αt

i at the final step reached by the previous trail. By
xoring up these two approximations, we are left with only ciphertext
bits, spanning five consecutive encryption steps.

6.4 linear trail for MiniMorus 153

·
M

C
≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i + b0

αt
i : weight 1 (not 2)

·
M

C
≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

βt
i : weight 1

·
M

C
≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i i

i + b1

γt
i : weight 1

·
M

C
≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i + b4

δt
i : weight 1

·
M

C
≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i + b2

εt
i : weight 1

αt
i : Ct

i → St+1
0,i+5

βt
i : Ct

i , St
0,i → St

1,i

γt
i : St

1,i , St+1
1,i+31 → St

4,i

δt
i : St

4,i , St+1
4,i+13 → St+1

2,i

εt
i : St

2,i , St+1
2,i+7 → St+1

0,i .

MiniMorus-640

αt
i : Ct

i → St+1
0,i+13

βt
i : Ct

i , St
0,i → St

1,i

γt
i : St

1,i, St+1
1,i+46 → St

4,i

δt
i : St

4,i, St+1
4,i+4 → St+1

2,i

εt
i : St

2,i, St+1
2,i+38 → St+1

0,i .

MiniMorus-1280

Figure 6.2: MiniMorus linear trail fragments.

154 cryptanalysis of morus

Of course, the overall trail resulting from all the previous combi-
nations is quite complex, especially since γt

i , δt
i , and εt

i each require
two copies of the preceding trail fragment in consecutive steps: that is,
εt

i requires two approximations of S2, which requires using δt
i twice;

and δt
i in turn requires using γt

i twice, which itself requires using αt
i

and βt
i twice. Then αt

i is used one final time to close the trail. The
full construction with the exact bit indices for MiniMorus-640 and
MiniMorus-1280 is illustrated in Figure 6.3, where the left and right
half each show half of the full trail. One may naturally wonder if some
components of this trail are in conflict. In particular, products of bits
from registers S2 and S3 are approximated multiple times, by αt

i , βt
i

and γt
i . To address this concern, and ensure that all approximations

along the trail are in fact compatible, we now compute the full trail
equation explicitly.

6.4.2 Trail Equation

The equation corresponding to each of the five trail fragments αt
i , βt

i ,
γt

i , δt
i , εt

i may be written explicitly as at
i , bt

i , ct
i , dt

i , et
i as follows. For

each equation, we write on the left-hand side of the equality the biased
linear combination used in the trail; and on the right-hand side, the
remainder of the equation, which must have non-zero correlation (in
all cases the correlation is 2−1).

at
i : Ct

i ⊕ St+1
0,i+b0

= St
1,i ⊕ St

3,i ⊕ St
1,i · St

2,i ⊕ St
2,i · St

3,i

bt
i : Ct

i ⊕ St
0,i ⊕ St

1,i = St
2,i · St

3,i

ct
i : St

1,i ⊕ St+1
1,i+b1

⊕ St
4,i = St

2,i · St
3,i

dt
i : St

4,i ⊕ St+1
4,i+b4

⊕ St+1
2,i = St+1

0,i · St+1
1,i

et
i : St

2,i ⊕ St+1
2,i+b2

⊕ St+1
0,i = St

3,i · St
4,i

From an algebraic point of view, building the full trail amounts to
adding up copies of the previous equations for various choices of t
and i, so that eventually all Sx

y,z terms on the left-hand side cancel
out. Then we are left with only ciphertext terms on the left-hand side,
while the right-hand side consists of a sum of biased expressions. By
measuring the correlation of the right-hand side expression, we are
then able to determine the correlation of the linear combination of
ciphertext bits on the left-hand side. We now set out to do so.

In order to build the equation for the full trail, we start with e2
0:

S2
2,0 ⊕ S3

2,b2
⊕ S3

0,0 = S2
3,0 · S2

4,0.

6.4 linear trail for MiniMorus 155

S0 S1 S2 S3 S4C

27

0

α27

0
0

0

β08

13

α8,2626

31

0

31

0

γ0

0

13

0
×

δ0

31 31 31
β13,3113

13

13

7

12

α7

13

12

13

γ13

12
12 12

β12

χ1: weight 7 (not 11)

S0 S1 S2 S3 S4C

2

7

α2

7 7

7

β715

20

α15,1,271

6

27

0

7

6

7

γ7

7

20

7

δ7

0×

7

0

ε0

6 6 6
β20,620

20

20

14

19

α14

20

19

20

γ20

19
19 19

β19

χ2: weight 9 (not 13)

MiniMorus-640

S0 S1 S2 S3 S4C

51

0

α51

0
0

0

β055

4

α55,3333

46

0

46

0

γ0

0

4

0
×

δ0

46 46 46
β4,464

4

4

37

50

α37

4

50

4

γ4

50
50 50

β50

χ1: weight 7 (not 11)

MiniMorus-1280

S0 S1 S2 S3 S4C

25

38

α25

38 38

38

β387

20

α7,1,5129

42

51

0

38

20

38

γ38

38

42

38

δ38

0×

38

0

ε0

42 42 42
β20,4220

20

20

11

24

α11

42

24

42

γ42

24
24 24

β24

χ2: weight 9 (not 13)

Figure 6.3: MiniMorus: two approximations for S2
2,0. Numbers in each diagram

denote bit positions used in the linear approximation, i. e., subscripts
of α, β, γ, δ and ε. χ1 and χ2 are two halves of the full trail which
we experimentally verify.

156 cryptanalysis of morus

In order to cancel the S3
0,0 term on the left-hand side, we add to the

equation a2
−b0

(where the sum of two equations of the form a = b and
c = d is defined to be a + c = b + d). This yields:

S2
2,0 ⊕ S3

2,b2
⊕ C2

−b0

= S2
3,0 · S2

4,0 ⊕ S2
1,−b0

⊕ S2
3,−b0

⊕ S2
1,−b0

· S2
2,−b0

⊕ S2
2,−b0

· S2
3,−b0

.

We then need to cancel two terms of the form St
2,i. To do this, we add

to the equations dt
i for appropriate choices of t and i. This replaces the

two St
2,i terms by four St

4,i terms. By using equation bt
i four times, we

can then replace these four St
4,i terms by eight St

1,i terms. By applying
equation bt

i eight times, these eight St
1,i terms can in turn be replaced

by eight St
0,i terms (and some ciphertext terms). Finally, applying at

i
eight times allows to replace these eight St

0,i terms by only ciphertext
bits. Ultimately, for MiniMorus-1280, this yields the equation:

C0
51 ⊕ C1

0 ⊕ C1
25 ⊕ C1

33 ⊕ C1
55 ⊕ C2

4 ⊕ C2
7 ⊕ C2

29 ⊕ C2
37

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C3

11 ⊕ C3
20 ⊕ C3

42 ⊕ C3
50 ⊕ C4

24

= S0
1,51 · S0

2,51 ⊕ S0
2,51 · S0

3,51 ⊕ S0
1,51 ⊕ S0

3,51 weight 1

⊕ S1
1,25 · S1

2,25 ⊕ S1
2,25 · S1

3,25 ⊕ S1
1,25 ⊕ S1

3,25 weight 1

⊕ S1
1,33 · S1

2,33 ⊕ S1
2,33 · S1

3,33 ⊕ S1
1,33 ⊕ S1

3,33 weight 1

⊕ S1
1,55 · S1

2,55 ⊕ S1
2,55 · S1

3,55 ⊕ S1
1,55 ⊕ S1

3,55 weight 1

⊕ S2
1,7 · S2

2,7 ⊕ S2
2,7 · S2

3,7 ⊕ S2
1,7 ⊕ S2

3,7 weight 1

⊕ S2
1,29 · S2

2,29 ⊕ S2
2,29 · S2

3,29 ⊕ S2
1,29 ⊕ S2

3,29 weight 1

⊕ S2
1,37 · S2

2,37 ⊕ S2
2,37 · S2

3,37 ⊕ S2
1,37 ⊕ S2

3,37 weight 1

⊕ S2
1,51 · S2

2,51 ⊕ S2
2,51 · S2

3,51 ⊕ S2
1,51 ⊕ S2

3,51 weight 1

⊕ S3
1,11 · S3

2,11 ⊕ S3
2,11 · S3

3,11 ⊕ S3
1,11 ⊕ S3

3,11 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
2,46 · S2

3,46 weight 1

⊕ S2
3,0 · S2

4,0 weight 1

⊕ S3
0,38 · S3

1,38 weight 1

⊕ S3
2,20 · S3

3,20 weight 1

⊕ S3
2,50 · S3

3,50 weight 1

⊕ S4
2,24 · S4

3,24 weight 1

The equation for MiniMorus-640 is very similar, and is given in
Section 6.A.

6.5 trail for full Morus 157

6.4.3 Correlation of the Trail

In the equation for MiniMorus-1280 from the previous section, each
line on the right-hand side of the equality involves distinct St

i,j terms
(in the sense that no two lines share a common term), and each line
has a weight of 1. By the Piling-Up Lemma, it follows that if we
assume distinct St

i,j terms to be uniform and independent, then the
expression on the right-hand side has a weight of 16. Hence the linear
combination of ciphertext bits on the left-hand side has a correlation
of 2−16. The same holds for MiniMorus-640.

The correlation is surprising high. The full trail uses trail fragments
εt

i, δt
i , γt

i , βt
i , and αt

i , once, twice, 4 times, 8 times, and 9 times, respec-
tively. Since each trail fragment has a weight of 1, this would suggest
that the total weight should be 1 + 2 + 4 + 8 + 9 = 24 rather than 16.
However, when combining trail fragments βi and γi, notice that the
same and is computed at the same step between registers S2 and S3
(equivalently, notice that the right-hand side of equations bt

i and ct
i

is equal). In both cases it is approximated by zero. When xoring the
corresponding equations, these two ands cancel each other, which
saves two and gates. Since γt

i is used four times in the course of the
full trail, this results in saving 8 and gates overall, which explains why
the final correlation is 2−16 rather than 2−24.

6.4.4 Experimental Verification

To confirm that our analysis is correct, we ran experiments on an imple-
mentation of MiniMorus-1280 and MiniMorus-640. We consider two
halves χ1 and χ2 of the full trail (depicted on Figure 6.3), as well as the
full trail itself, denoted by χ. In each case, we give the weight predicted
by the analysis from the previous section, and the weight measured
by our experiments. Results are displayed on Table 6.3. While our
analysis predicts a correlation of 2−16, experiments indicate a slightly
better empirical correlation of 2−15.5 for Morus-640. The discrepancy
of 2−0.5 probably arises from the fact that register bits across different
steps are not completely independent.

The programs we used to verify the bias experimentally are available
in the associated software that comes with this thesis (Section 1.3).

6.5 trail for full Morus

In the previous section, we presented a linear trail for the reduced
ciphers MiniMorus-1280 and MiniMorus-640. We now turn to the
full ciphers Morus-1280 and Morus-640.

158 cryptanalysis of morus

Weight

Approximations for MiniMorus-640 Exp. Bool. Meas.

χ1 S2,2
0 = C0

27 ⊕ C1
0,8,26 ⊕ C2

7,13,31 ⊕ C3
12 7 7 7

χ2 S2,2
0 = C1

2 ⊕ C2
1,7,15,27 ⊕ C3

6,14,20 ⊕ C4
19 9 9 9

χ
0 = C0

27 ⊕ C1
0,2,26,8 ⊕ C2

1,13,15,27,31

⊕ C3
6,12,14,20 ⊕ C4

19

16 16 15.5

Approximations for MiniMorus-1280

χ1 S2,2
0 = C0

51 ⊕ C1
0,33,55 ⊕ C2

4,37,46 ⊕ C3
50 7 7 7

χ2 S2,2
0 = C1

25 ⊕ C2
7,29,38,51 ⊕ C3

11,20,42 ⊕ C4
24 9 9 9

χ
0 = C0

51 ⊕ C1
0,25,33,55 ⊕ C2

4,7,29,37,38,46,51

⊕ C3
11,20,42,50 ⊕ C4

24

16 16 15.9

Table 6.3: Experimental verification of trail correlations.

6.5.1 Making the Trail Rotationally Invariant

In order to build a trail for the full Morus, we proceed exactly as we
did for MiniMorus, following the same path down to step and word
rotation values, with one difference: in order to move from the one-
word registers of MiniMorus to the four-word registers of full Morus,
we make every term St

i,j and Ct
j rotationally invariant, in the sense of

Section 6.3. That is, for every St
i,j (resp. Ct

j) component in every trail
fragment and every equation, we expand the term by adding in the
terms St

i,j+w, St
i,j+2w, St

i,j+3w (resp. Ct
j+w, Ct

j+2w, Ct
j+3w), where as usual

w denotes the word size. For example, if w = 64 (for Morus-1280), the
term S3

2,0 is expanded into:

S3
2,0 ⊕ S3

2,64 ⊕ S3
2,128 ⊕ S3

2,192.

Thus, translating the trail from one of the MiniMorus ciphers
to the corresponding full Morus cipher amounts to making every
linear combination rotationally invariantÐindeed, that was the point
of introducing MiniMorus in the first place. Concretely, in order to
build the full trail equation for Morus, we write rotationally invariant
versions of equations at

i , bt
i , ct

i , dt
i , et

i from Section 6.4.2, and then
combine them in exactly the same manner as before. This way, the
biased linear combination on MiniMorus-1280 given in Section 6.4.2,
namely:

C0
51 ⊕ C1

0 ⊕ C1
25 ⊕ C1

33 ⊕ C1
55 ⊕ C2

4 ⊕ C2
7 ⊕ C2

29 ⊕ C2
37

6.5 trail for full Morus 159

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C3

11 ⊕ C3
20 ⊕ C3

42 ⊕ C3
50 ⊕ C4

24

ultimately yields the following biased rotationally invariant linear
combination on the full Morus-1280:

C0
51 ⊕ C0

115 ⊕ C0
179 ⊕ C0

243 ⊕ C1
0 ⊕ C1

25 ⊕ C1
33 ⊕ C1

55 ⊕ C1
64 ⊕ C1

89

⊕ C1
97 ⊕ C1

119 ⊕ C1
128 ⊕ C1

153 ⊕ C1
161 ⊕ C1

183 ⊕ C1
192 ⊕ C1

217 ⊕ C1
225 ⊕ C1

247

⊕ C2
4 ⊕ C2

7 ⊕ C2
29 ⊕ C2

37 ⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C2

68 ⊕ C2
71 ⊕ C2

93

⊕ C2
101 ⊕ C2

102 ⊕ C2
110 ⊕ C2

115 ⊕ C2
132 ⊕ C2

135 ⊕ C2
157 ⊕ C2

165 ⊕ C2
166 ⊕ C2

174

⊕ C2
179 ⊕ C2

196 ⊕ C2
199 ⊕ C2

221 ⊕ C2
229 ⊕ C2

230 ⊕ C2
238 ⊕ C2

243 ⊕ C3
11 ⊕ C3

20

⊕ C3
42 ⊕ C3

50 ⊕ C3
75 ⊕ C3

84 ⊕ C3
106 ⊕ C3

114 ⊕ C3
139 ⊕ C3

148 ⊕ C3
170 ⊕ C3

178

⊕ C3
203 ⊕ C3

212 ⊕ C3
234 ⊕ C3

242 ⊕ C4
24 ⊕ C4

88 ⊕ C4
152 ⊕ C4

216

We refer the reader to Section 6.C for the corresponding linear combi-
nation on Morus-640.

6.5.2 Correlation of the Full Trail

The rotationally invariant trail on full Morus may be intuitively under-
stood as consisting of four copies of the original trail on MiniMorus.
Indeed, the only difference between full Morus (for either version
of Morus) and four independent copies of MiniMorus comes from
word-wise rotations, which permute words within a register. But as
observed in Section 6.3, word-wise rotations preserves the rotational
invariance property; and so, insofar as we only ever use rotationally
invariant linear combinations on all registers along the trail, word-wise
rotations have no effect.

Following the previous intuition, one may expect that the weight of
the full trail should simply be four times the weight of the correspond-
ing MiniMorus trail, namely 64 for both Morus-1280 and Morus-640.
However, reality is a little more complex, as the full trail does not
exactly behave as four copies of the original trail when one considers
nonlinear terms.

To understand why that might be the case, assume a nonlinear
term S0

2,0 · S0
3,0 arising from some part of the trail, and another term

S0
2,0 · S0

3,w arising from a different part of the trail (where w denotes the
word size). Then, when we xor the various trail fragments together,
in MiniMorus these two terms are actually equal and will cancel out,
since word-wise rotations by multiples of w bits are ignored. However,
in the real Morus these terms are of course distinct and do not cancel
each other.

In the actual trail for (either version of) full Morus, this exact sit-
uation occurs when combining trail fragments βt

i and γt
i . Indeed, βt

i
requires approximating the term St

2,i · St
3,i, while γt

i requires approx-
imating the term St

2,i · St
3,i−w (cf. Figure 6.4). While in MiniMorus,

160 cryptanalysis of morus

·
M

C
≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

i + b1

=

MiniMorus: weight 0 (not 2)

·
M

C
≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

i + b1

Morus: weight 4× 1 (not 4× 2)

Figure 6.4: Weight of βt
i ⊕ γt

i for MiniMorus and Morus.

these terms cancel out, in the full Morus, when adding up four copies
of the trail to achieve rotational invariance, we end up with the sum:

St
2,i · St

3,i ⊕ St
3,i · St

2,i+w ⊕ St
2,i+w · St

3,i+w

⊕ St
3,i+w · St

2,i+2w ⊕ St
2,i+2w · St

3,i+2w ⊕ St
3,i+2w · St

2,i+3w

⊕ St
2,i+3w · St

3,i+3w ⊕ St
3,i+3w · St

2,i.

(6.2)

It may be observed that the products occurring in the equation above
involve eight terms forming a ring. The weight of this expression can
be computed by brute force, and is equal to 3.

For Morus-1280, since the trail fragment γt
i is used four times, this

phenomenon adds a contribution of 4 · 3 = 12 to the overall weight of
the full trail. This results in a total weight of 4 · 16+ 12 = 76 (recall that
the weight of the trail on MiniMorus-1280 is 16). We have confirmed
this by explicitly computing the full trail equation in Section 6.D, and
evaluating its exact weight like we did for MiniMorus in Section 6.4.3.
That is, since the equation is quadratic, we may view it as a graph,
which we split into connected components; we then compute the
weight of each connected component separately by brute force, and
then add up the weights of all components per the Piling-Up Lemma.
Overall, the full trail equation given in Section 6.D yields a weight of
76 for the full trail on Morus-1280.

6.5 trail for full Morus 161

In the case of Morus-640, collisions between rotation constants
further complicate the analysis. Specifically, when using trail frag-
ment βt

i , the term St
2,i · St

3,i occurs. As explained previously, a partial
collision with the term St

2,i · St
3,i−w from trail fragment γt

i results in
Equation (6.2). However, trail fragment αt

i+d is once used in the course
of the full trail with an offset of d = b1 + b4 − b0 − b2 (relative to γt

i),
which in the case of Morus-640 is equal to 31+ 13− 5− 7 = 0 mod 32.
This creates another term St

2,i · St
3,i, which ultimately destroys one of

the four occurrences of Equation (6.2). Therefore, when computing the
full trail equation on Morus-640, we get that the weight of the trail is
73 (cf. Section 6.C).

6.5.3 Taking Variable Plaintext into Account

In our analysis so far, for the sake of simplicity, we have assumed
that all plaintext blocks are zero. We now examine what happens
if we remove that assumption, and integrate plaintext variables into
our analysis. What we show is that plaintext variables only contribute
linearly to the trail. In other words, the full trail equation with plaintext
variables is equal to the full trail equation with all-zero plaintext xored
with a linear combination of plaintext variables.

To see this, recall that plaintext bits contribute to the encryption
process in two ways (cf. Section 6.2.1):

1. They are added to some bits derived from the state to form the
ciphertext.

2. During each encryption step, the StateUpdate function adds a
plaintext block to every register except S0.

The effect of Item 1 is that whenever we use a ciphertext bit in our
full trail equation, the corresponding plaintext bit also needs to be
xored in. Because ciphertext bits only contribute linearly to the trail
equation, this only adds a linear combination of plaintext bits to the
equation.

Regarding Item 2, recall that the full trail equation is a linear com-
bination of (the rotationally invariant version of) equations at

i , bt
i , ct

i ,
dt

i , et
i in Section 6.4.2. Also observe that in each equation, state bits

that are shifted by a bit-wise rotation only contribute linearly. Because
plaintext bits are xored into each register at the same time bit-wise
rotation is performed, this implies that plaintext bits resulting from
Item 2 also only contribute linearly. In fact in all cases, it so happens
that updating the equation to take plaintext variables into account
simply involves xoring in the plaintext bit Mt

i .
It may be observed that message blocks in the StateUpdate function

only contribute linearly to the state, and in that regard play a role
similar to key bits in an SPN cipher; and indeed in SPN ciphers, it is

162 cryptanalysis of morus

the case that key bits contribute linearly to linear trails [Mat93]. In this
light the previous result may not be surprising.

In the end, with variable plaintext, our trail yields a biased linear
combination of ciphertext bits and plaintext bits. With regard to attacks,
this means the situation is effectively the same as with a biased stream
cipher: in particular if the plaintext is known we obtain a distinguisher;
and if a fixed unknown plaintext is encrypted multiple times (possibly
also with some known variable part) then our trail yields a plaintext
recovery attack.

6.6 discussion

We now discuss the impact of these attacks on the security of Morus.

6.6.1 Keystream Correlation

We emphasize that the correlation we uncover between plaintext and
ciphertext bits is absolute, in the sense that it does not depend on
the encryption key, or on the nonce. This is the same situation as
the keystream correlations in AEGIS [Min14]. As such, they can be
leveraged to mount an attack in the broadcast setting, where the same
message is encrypted multiple times with different IVs and potentially
different keys [MS01]. In particular, the broadcast setting appears in
practice in man-in-the-browser attacks against HTTPS connections
following the BEAST model [DR11]. In this scenario, an attacker uses
Javascript code running in the victim’s browser (by tricking the victim
to visit a malicious website) to generate a large number of request to a
secure website. Because of details of the HTTP protocol, each request
includes an authentication token to identify the user, and the attacker
can target this token as a repeated plaintext. Concretely, correlations
in the RC4 keystream have been exploited in this setting, leading to
the recovery of authentication cookies in practice [AlF+13].

6.6.2 Data Complexity

The design document of MORUS imposes a limit of 264 encrypted
blocks for a given key. However, since our attack is independent of the
encryption key, and hence immune to rekeying, this limitation does
not apply: all that matters for our attack is that the same plaintext be
encrypted enough times.

With the trail presented in this work, the data complexity is clearly
out of reach in practice, since exploiting the correlation would require
2152 encrypted blocks for MORUS1280, and 2146 encrypted blocks
for MORUS640. The data complexity could be slightly lowered by
leveraging multilinear cryptanalysis; indeed, the trail holds for any
bit shift, and if we assume independence, we could run w copies of

6.7 analysis on reduced Morus 163

the trail in parallel on the same encrypted blocks (recall that w is the
word size, and the trail is invariant by rotation by w bits). This would
save a factor 25 on the data complexity for MORUS640, and 26 for
MORUS1280; but the resulting complexity is still out of reach.

However, MORUS1280 with a 256-bit key claims a security level of
256 bits for confidentiality, and an attack with complexity 2152 violates
this claim, even if it is not practical.

6.6.3 Design Considerations

The existence of this trail does hint at some weakness in the design
of MORUS. Indeed, a notable feature of the trail is that the values of
rotation constants are mostly irrelevant: a similar trail would exist for
most choices of the constants. That it is possible to build a trail that
ignores rotation constants may be surprising. This would have been
prevented by adding a bit-wise rotation to one of the state registers at
the input of the ciphertext equation.

6.7 analysis on initialization and finalization of re-
duced Morus

The bias in the previous sections analyzed the encryption part of the
Morus. In this section, for comprehensive security analysis of Morus,
we provide new attacks on reduced version of the initialization and
the finalization. We emphasize that the results in this section do not
threaten any security claim by the designers. However, we believe that
investigating all parts of the design with different approaches from
the existing work on Morus provides a better understanding and will
be useful especially when the design will be tweaked in the future.

6.7.1 Forgery with Reduced Finalization

We present forgery attacks on 3 out of 10 steps of Morus-1280 that
claims 128-bit security for integrity. The attack only works for a limited
number of steps, while it works in the nonce-respecting setting. As far
as we know, this is the first attempt to evaluate integrity of Morus in
the nonce-respecting setting.

overview. A general strategy for forgery attacks in the nonce-
respecting setting is to inject some difference in a message block and
propagate it so that it can be canceled by a difference in another
message block. However, this approach does not work well against
Morus due to its large state size which prevents an attacker from
easily controlling the differences in different registers.

Here we focus on the property that the padding for an associated
data A and a message M is the zero-padding, hence A and A′ = A∥‘0∗’

164 cryptanalysis of morus

and M and M′ = M∥‘0’ result in identical states after the associated
data processing and the encryption parts, as long as A, A′ and M, M′ fit
in the same number of blocks. During the finalization, since A, A′ (resp.
M, M′) have different lengths, the corresponding 64-bit values |A|
(resp. |M|) are different, which appears as ∆|A| (resp. ∆|M|) during
the finalization, and is injected through the message input interface.
Our strategy is to propagate this difference to the 128-bit tags T
and T′ such that their difference ∆T appears with higher probability
than 2−128. All in all, the forgery succeeds as long as the desired ∆T
is obtained or in other words, the attacker does not have to cancel
the state difference, which is the main advantage of attacking the
finalization part of the scheme.

Note that if the attacker uses different messages M, M′, not only
the new tag T′ but also new ciphertext C′ must be guessed correctly.
Because the encryption of Morus is a simple xor of the key stream, C′

can be easily guessed. For this purpose, the attacker should first query
a longer message M′ = M∥‘0∗’ to obtain C′. Then, C can be obtained
by truncating C′.

differential trails . Recall that the message input during the fi-
nalization of Morus-1280 is |A| ∥ |M| ∥ ‘0128’ where |A| and |M| are 64-
bit strings. We set ∆|A| to be of low Hamming weight, e. g., 0x00000000
00000001. This difference propagates through 3 steps as specified in
Table 6.4.

Recall that each step consists of 5 rounds and the input message is
absorbed to the state in rounds 2 to 5. The trail in Table 6.4 initially
does not have any difference and the same continues even after round 1.
Differences start to appear from round 2 and they will go through the
bitwise-and operation from round 4. We need to pay 1 bit to control
each active and gate. The probability evaluation for round 15 can be
ignored since in this round only S4 is non-linearly updated, while S4
is never used for computing the tag. Finally, bitwise-and in the tag
computation is taken into account. Note that the tag is only 128 LSBs,
thus the number of active and gates should be counted only for those
bits. As shown in Table 6.4, we can have a particular tag difference ∆T
with probability 2−88. Thus after observing A and corresponding T,
A∥0 and (T ⊕ ∆T) is a valid pair with probability 2−88.

Round State difference w
Acc.

prob.

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

Ini 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 −
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

6.7 analysis on reduced Morus 165

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

1 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000400000000000 0000000000000000 0000000000000000 0000000000000000 1

2 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000400000000000 0000000000000000 0000000000000000 0000000000000000 1

3 0000004000000000 0000000000000000 0000000000000000 0000000000000000 1 1

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

4 0000004000000000 0000000000000000 0000000000000000 0000000000000000 1 1

0020000000000080 0000000000000000 0000000000000000 0000000000000000 2

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

2−1
5 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1

0020000000000080 0000000000000000 0000000000000000 0000000000000000 2

0000040000000010 0000000000000000 0000000000000000 0000000000000000 2

0000000000100004 0000000000000000 0000000000000000 0000000000000000 2

0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

2−3
6 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1

0000000000000000 0000000000000000 0000000000000000 0020000000000080 2

0000040000000010 0000000000000000 0000000000000000 0000000000000000 2

0000000000100004 0000000000000000 0000000000000000 0000000000000000 2

0004400001000000 0000000000000000 0000000010000000 0000000000000000 4

2−6
7 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1

0000000000000000 0000000000000000 0000000000000000 0020000000000080 2

0000000000000000 0000000000000000 0000040000000010 0000000000000000 2

0000000000000000 0000000000100004 0000000000000000 0000000000000000 2

0004400001000000 0000000000000000 0000000010000000 0000000000000000 4

2−10
8 0400014000000000 0000000000000000 0000000000000000 0000000000001000 4

0000000000000000 0000000000000000 0000000000000000 0020000000000080 2

0000000000000000 0000000000000000 0000040000000010 0000000000000000 2

0000000000000000 0000000000100004 0000000000000000 0000000000000000 2

0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−14
9 0400014000000000 0000000000000000 0000000000000000 0000000000001000 4

0220000080000080 0000000000000000 0000000800000000 1000000000004000 7

0000000000000000 0000000000000000 0000040000000010 0000000000000000 2

0000000000000000 0000000000100004 0000000000000000 0000000000000000 2

0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−20
10 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4

0220000080000080 0000000000000000 0000000800000000 1000000000004000 7

166 cryptanalysis of morus

4000140000000010 0000000000000000 0000400000000100 0000000000010000 7

0000100000100044 0000000200008000 0001000000000000 0000000008000200 9

0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−28
11 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4

0000000000000000 0000000800000000 1000000000004000 0220000080000080 7

4000140000000010 0000000000000000 0000400000000100 0000000000010000 7

0000100000100044 0000000200008000 0001000000000000 0000000008000200 9

0004500005000400 0000000000000000 0040000100000040 4000000000000000 10

2−39
12 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4

0000000000000000 0000000800000000 1000000000004000 0220000080000080 7

0000400000000100 0000000000010000 4000140000000010 0000000000000000 7

0000000008000200 0000100000100044 0000000200008000 0001000000000000 9

0004500005000400 0000000000000000 0040000100000040 4000000000000000 10

2−53
13 0400114000040000 0020000000000080 0004000000400000 0000800100005002 14

0000000000000000 0000000800000000 1000000000004000 0220000080000080 7

0000400000000100 0000000000010000 4000140000000010 0000000000000000 7

0000000008000200 0000100000100044 0000000200008000 0001000000000000 9

0040000100000040 4000000000000000 0004500005000400 0000000000000000 10

2−69
14 0400114000040000 0020000000000080 0004000000400000 0000800100005002 14

0228000280020080 0000040000000000 2000008000202008 1000004000004021 18

0000400000000100 0000000000010000 4000140000000010 0000000000000000 7

0000000008000200 0000100000100044 0000000200008000 0001000000000000 9

0040000100000040 4000000000000000 0004500005000400 0000000000000000 10

15 0020000000000080 0004000000400000 0000800100005002 0400114000040000 14 −
0228000280020080 0000040000000000 2000008000202008 1000004000004021 18

0000400000000100 0000000000010000 4000140000000010 0000000000000000 7

∆T 600080830020f00a 1405414005044421 2−88

Table 6.4: Differential propagation through 3 Steps. Five lines for round i de-
note the difference of S0, · · · , S4 after the round i transformation. In
this table Weight is a Hamming weight of the state difference and
accumulated probability is a probability to satisfy the trail from the
beginning.

remarks . The fact that the S4 is updated in the last round but is
not used in the tag generation implies that the Morus finalization
generally includes unnecessary computations with respect to security.
It may be interesting to tweak the design such that the tag can also
depend on S4. Indeed, in Table 6.4, we can observe some jump-up of
the probability in the tag computation. This is because the non-linearly
involved terms are S2 · S3, and S3 that was updated 2 rounds before
has a high Hamming weight. In this sense, involving S4 in non-linear
terms of the tag computation imposes more difficulties for the attacker.

6.7 analysis on reduced Morus 167

6.7.2 Extending State Recovery to Key Recovery

Kales et al. [KEM17] showed that the internal state of Morus-640

can be recovered under the nonce-misuse scenario using 25 plaintext-
ciphertext pairs. As claimed by [KEM17] the attack is naturally ex-
tended to Morus-1280 though Kales et al. [KEM17] did not demon-
strate specific attacks. The recovered state allows the attacker to mount
a universal forgery attack under the same nonce. However, the key
still cannot be recovered because the key is used both at the beginning
and end of the initialization, which prevents the attacker from back-
tracking the state value to the initial state. In this section, we show
that meet-in-the-middle attacks allow the attacker to recover the key
faster than exhaustive search for a relatively large number of steps,
i. e., 10 out of 16 steps in Morus-1280.

overview. We divide the 10 steps of the initialization computation
into two subsequent parts F0 and F1. (We later set that F0 is the first
4 steps and F1 is the last 6 steps.) Let S−10 be the initial state value
before setting the key, i. e., S−10 = (N∥‘0128’, ‘0256’, ‘1256’, ‘0256’, c0∥c1).
Also let S0 be 1280-bit state value after the initialization, which is now
assumed to be recovered with the nonce-misuse analysis [KEM17]. We
then have the following relation.

F1 ◦ F0
(
S−10 ⊕ (0, K, 0, 0, 0)

)
⊕ (0, K, 0, 0, 0) = S0.

We target the variant Morus-1280-128, where K = K128∥K128.
Here, our strategy is to recover K128 by independently processing

F0 and F−1
1 to find the following match.

F0(S
−10 ⊕ (0, K128∥K128, 0, 0, 0)) ?

= F−1
1 (S0 ⊕ (0, K128∥K128, 0, 0, 0)).

To evaluate the attack complexity, we consider the following param-
eters.

• G0: a set of bits of K128 that are guessed for computing F0.
• G1: a set of bits of K128 that are guessed for computing F−1

1 .
• G2: a set of bits in the intersection of G0 and G1.
• x bits can match after processing F0 and F−1

1 .
Suppose that the union of G0 and G1 covers all the bits of K128. The
attack exhaustively guesses G2 and performs the following procedure
for each guess.

1. F0 is computed 2|G0|−|G2| times and the results are stored in a
table T. (Because |G1| − |G2| bits are unknown, only a part of
the state is computed.)

2. F−1
1 is computed 2|G1|−|G2| times and for each result we check

the match with any entry in T.

168 cryptanalysis of morus

3. The number of possible combinations is 2|G0|−|G2|+|G1|−|G2|, and
the number of valid matches reduces to 2|G0|−|G2|+|G1|−|G2|−x

after matching the x bits.

4. Check the correctness of the guess by using one plaintext-
ciphertext pair.

In the end, F0 is computed 2|G2| · 2|G0|−|G2| = 2|G0| times. Similarly,
F−1

1 is computed 2|G1| times. The number of the total candidates
after the x-bit match is 2|G2| · 2|G0|−|G2|+|G1|−|G2|−x = 2|G0|+|G1|−|G2|−x.
Hence, the key K128 is recovered with complexity

max(2|G0|, 2|G1|, 2|G0|+|G1|−|G2|−x).

Suppose that we choose |G0| and |G1| to be balanced i. e., |G0| = |G1|.
Then, the complexity is

max(2|G0|, 22|G0|−|G2|−x).

Two terms are balanced when x = |G0| − |G2|. Hence, the number of
matched bits in the middle of two functions must be greater than or
equal to the number of independently guessed bits to compute F0 and
F−1

1 .
In the attack below, we choose |G0| = |G1| = 127 and |G2| = 126

(equivalently |G2| − |G0| = |G2| − |G1| = 1) in order to aim x = 1-bit
match in the middle, which maximizes the number of attacked rounds.

Round State Difference
0000000000000000 0000000000000000 0000000000000000 0000000000000000

S−10 ⊕ K128

0000000000000000 0000000000000001 0000000000000000 0000000000000001

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000002000 0000000000000000 0000000000002000 0000000000000000

0000000000000000 0000400000000000 0000000000000000 0000400000000000

1 0008000000000000 0000000000000000 0008000000000000 0000000000000000

0000000000100000 0020000000000000 0000000000100000 0020000000000000

0000000000020000 0084000000000000 0000000000020000 0084000000000000

0800000000000004 0000000204000001 0800000000000004 0000000204000001

8000000a00000000 0000002110000004 8000000a00000000 0000002110000004

2 0400010221000000 008000400a000081 0400010221000000 008000400a000081

1000050001000244 4200118a08000280 1000050001000244 4200118a08000280

880004a0a0200858 4840123350000050 880004a0a0200858 4840123350000050

023d63c00050a850 00a1442000489380 023d63c00050a850 00a1442000489380

02b63380056aaa48 00b5563005dcd6c0 02b63380056aaa48 00b5563005dcd6c0

3 d42ab556bf5dfcd6 5a26f633a8556aaa d42ab556bf5dfcd6 5a26f633a8556aaa

5fbbf556bd556c65 7aab99aaee6bea2c 5fbbf556bd556c65 7aab99aaee6bea2c

abff7f3ad7feafad cfff777ffddffd6d abff7f3ad7feafad cfff777ffddffd6d

fff77dfffffdcf57 fefad7efffdffbf7 fff77dfffffdcf57 fefad7efffdffbf7

ffffffffffffbfff fffbf7fffddfff77 ffffffffffffbfff fffbf7fffddfff77

4 ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

ffffffffffffffff fffbffffefffffff ffffffffffffffff fffbffffefffffff

ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

6.7 analysis on reduced Morus 169

2-bits match 2-bits match

ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

5 ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff

ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7

ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7

fffbf5e7cdfffbf7 fffff7bfcdfff757 fffbf5e7cdfffbf7 fffff7bfcdfff757

6 fffbf5e7cdfffbf7 fffff7bfcdfff757 fffbf5e7cdfffbf7 fffff7bfcdfff757

7ffd75b6cdfff357 fffbf5a6ccfcfb73 7ffd75b6cdfff357 fffbf5a6ccfcfb73

7ffbf5a6ccfcf373 7ff975b6ccfff353 7ffbf5a6ccfcf373 7ff975b6ccfff353

7efbf5a6cc7cf353 7fd975a6cceff353 7efbf5a6cc7cf353 7fd975a6cceff353

7eb950a4cc78e353 7dd07184cced7153 7eb950a4cc78e353 7dd07184cced7153

7 7eb950a4cc78e353 7dd07184ccec7153 7eb950a4cc78e353 7dd07184ccec7153

7cd051044c6c3153 3e985024cc48a313 7cd051044c6c3153 3e985024cc48a313

3c905004cc482313 7c9051044c6c2113 3c905004cc482313 7c9051044c6c2113

2c905004c4482113 7c9050040c682113 2c905004c4482113 7c9050040c682113

2810100444082112 5c1010040c402113 2810100444082112 5c1010040c402113

8 2810100444082112 1c1010040c402113 2810100444082112 1c1010040c402113

0c00100404400113 2800000404082112 0c00100404400113 2800000404082112

0800000404002112 0800100404400113 0800000404002112 0800100404400113

0800000404002112 0800100004000112 0800000404002112 0800100004000112

0000000404000102 0000100004000110 0000000404000102 0000100004000110

9 0000000404000102 0000000004000110 0000000404000102 0000000004000110

0000000004000110 0000000000000102 0000000004000110 0000000000000102

0000000000000100 0000000004000110 0000000000000100 0000000004000110

0000000000000100 0000000004000100 0000000000000100 0000000004000100

0000000000000000 0000000004000100 0000000000000000 0000000004000100

10 0000000000000000 0000000000000100 0000000000000000 0000000000000100

0000000000000100 0000000000000000 0000000000000100 0000000000000000

0000000000000000 0000000000000100 0000000000000000 0000000000000100

0000000000000000 0000000000000000 0000000000000000 0000000000000000

S0 ⊕ K128

0000000000000000 0000000000000100 0000000000000000 0000000000000100

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

Table 6.5: Analysis of the diffusion and matching bits over 10 steps. ‘0’ and ‘1’
denote that the state bit can and cannot be computed from a partial
knowledge of K128, respectively. After the partial computations from
each direction, 4 bits of S−6 can match.

full diffusion rounds . We found that StepUpdate was de-
signed to have good diffusion in the forward direction. Thus, once the
state is recovered, the attacker can perform the partial computation in
the backward direction longer than the forward direction. We set G0
and G1 as follows.

G0 = {1, 2, · · · , 127} Bit position 0 is unknown.

G1 = {0, 1, · · · , 7, 9, 10, · · · , 127} Bit position 8 is unknown.

Those will lead to 4 matching bits after the 4-step forward computation
and the 6-step backward computation. The analysis of the diffusion
is given in Table 6.5. In the end, K128 can be recovered faster than the
exhaustive search by 1 bit, i. e., with complexity 2127.

170 cryptanalysis of morus

remarks . The matching state does not have to be a border of a
step. It can be defined on a border of a round, or even in some more
complicated way. We did not find the extension of the number of
attacked steps even with this way.

As can be seen in Table 6.5, the updated register in step i is indepen-
dent of the update function in step i + 1 in the forward direction, and
starts to impact from step i + 2. By modifying this point, the diffusion
speed can increase faster, which makes this attack harder.

6.8 conclusion

This work provides a comprehensive analysis of the components of
Morus. In particular, we show that Morus-1280’s keystream exhibits
a correlation of 2−76 between certain ciphertext bits. This enables a
plaintext recovery attack in the broadcast setting, using about 2152

blocks of data. While the amount of data required is impractical, this
seems to violate the security claims of Morus-1280 because the attack
works even if the key is refreshed regularly. Moreover, the broadcast
setting is practically relevant, as was shown with attacks against RC4

as used in TLS [AlF+13].
Prior its submission, the published paper has been shared with the

authors of Morus and they agreed with the technical details of the
keystream bias. However, they consider that it is not a significant weak-
ness in practice because it requires more than 264 ciphertexts bits. In
the context of the CAESAR competition, we believe that certificational
attacks such as this one should be taken into account, in order to select
a portfolio of candidates that reflects the state-of-the-art in terms of
cryptographic design.

A P P E N D I X O F C H A P T E R 6

We provide full trail equations for all variants of Morus. In each case,
we decompose the right-hand side of the equality (involving state
bits) into connected components, and compute the weight of each of
these connected components. If we assume that distinct state bits are
uniformly random and independent, then each connected component
is independent. By the Piling-Up Lemma, it follows that the weight of
the full equation is equal to the sum of the weights of the connected
components.

6.a trail equation for MiniMorus-640

C0
27 ⊕ C1

0 ⊕ C1
2 ⊕ C1

8 ⊕ C1
26 ⊕ C2

1 ⊕ C2
13 ⊕ C2

15

⊕ C2
27 ⊕ C2

31 ⊕ C3
6 ⊕ C3

12 ⊕ C3
14 ⊕ C3

20 ⊕ C4
19

= S0
1,27 ⊕ S0

3,27 ⊕ S0
1,27 · S0

2,27 ⊕ S0
2,27 · S0

3,27 weight 1

⊕ S1
1,26 ⊕ S1

3,26 ⊕ S1
1,26 · S1

2,26 ⊕ S1
2,26 · S1

3,26 weight 1

⊕ S1
1,8 ⊕ S1

3,8 ⊕ S1
1,8 · S1

2,8 ⊕ S1
2,8 · S1

3,8 weight 1

⊕ S2
3,1 ⊕ S2

1,1 ⊕ S2
1,1 · S2

2,1 ⊕ S2
2,1 · S2

3,1 weight 1

⊕ S2
1,7 ⊕ S2

3,7 ⊕ S2
1,7 · S2

2,7 ⊕ S2
2,7 · S2

3,7 weight 1

⊕ S2
1,15 ⊕ S2

3,15 ⊕ S2
1,15 · S2

2,15 ⊕ S2
2,15 · S2

3,15 weight 1

⊕ S2
1,27 ⊕ S2

3,27 ⊕ S2
1,27 · S2

2,27 ⊕ S2
2,27 · S2

3,27 weight 1

⊕ S1
1,2 ⊕ S1

3,2 ⊕ S1
1,2 · S1

2,2 ⊕ S1
2,2 · S1

3,2 weight 1

⊕ S3
3,14 ⊕ S3

1,14 ⊕ S3
1,14 · S3

2,14 ⊕ S3
2,14 · S3

3,14 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
2,31 · S2

3,31 weight 1

⊕ S2
3,0 · S2

4,0 weight 1

⊕ S3
0,7 · S3

1,7 weight 1

⊕ S3
2,6 · S3

3,6 weight 1

⊕ S3
2,12 · S3

3,12 weight 1

⊕ S4
2,19 · S4

3,19. weight 1

The total weight of the trail is 16.

171

172 cryptanalysis of morus

6.b trail equation for MiniMorus-1280

This trail equation was already given in Section 6.4.2.

C0
51 ⊕ C1

0 ⊕ C1
25 ⊕ C1

33 ⊕ C1
55 ⊕ C2

4 ⊕ C2
7 ⊕ C2

29 ⊕ C2
37

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C3

11 ⊕ C3
20 ⊕ C3

42 ⊕ C3
50 ⊕ C4

24

= S0
1,51 · S0

2,51 ⊕ S0
2,51 · S0

3,51 ⊕ S0
1,51 ⊕ S0

3,51 weight 1

⊕ S1
1,25 · S1

2,25 ⊕ S1
2,25 · S1

3,25 ⊕ S1
1,25 ⊕ S1

3,25 weight 1

⊕ S1
1,33 · S1

2,33 ⊕ S1
2,33 · S1

3,33 ⊕ S1
1,33 ⊕ S1

3,33 weight 1

⊕ S1
1,55 · S1

2,55 ⊕ S1
2,55 · S1

3,55 ⊕ S1
1,55 ⊕ S1

3,55 weight 1

⊕ S2
1,7 · S2

2,7 ⊕ S2
2,7 · S2

3,7 ⊕ S2
1,7 ⊕ S2

3,7 weight 1

⊕ S2
1,29 · S2

2,29 ⊕ S2
2,29 · S2

3,29 ⊕ S2
1,29 ⊕ S2

3,29 weight 1

⊕ S2
1,37 · S2

2,37 ⊕ S2
2,37 · S2

3,37 ⊕ S2
1,37 ⊕ S2

3,37 weight 1

⊕ S2
1,51 · S2

2,51 ⊕ S2
2,51 · S2

3,51 ⊕ S2
1,51 ⊕ S2

3,51 weight 1

⊕ S3
1,11 · S3

2,11 ⊕ S3
2,11 · S3

3,11 ⊕ S3
1,11 ⊕ S3

3,11 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
2,46 · S2

3,46 weight 1

⊕ S2
3,0 · S2

4,0 weight 1

⊕ S3
0,38 · S3

1,38 weight 1

⊕ S3
2,20 · S3

3,20 weight 1

⊕ S3
2,50 · S3

3,50 weight 1

⊕ S4
2,24 · S4

3,24 weight 1

The total weight of the trail is 16.

6.c trail equation for full Morus-640

C0
27 ⊕ C0

59 ⊕ C0
91 ⊕ C0

123 ⊕ C1
0 ⊕ C1

2 ⊕ C1
8 ⊕ C1

26

⊕ C1
32 ⊕ C1

34 ⊕ C1
40 ⊕ C1

58 ⊕ C1
64 ⊕ C1

66 ⊕ C1
72 ⊕ C1

90

⊕ C1
96 ⊕ C1

98 ⊕ C1
104 ⊕ C1

122 ⊕ C2
1 ⊕ C2

13 ⊕ C2
15 ⊕ C2

27

⊕ C2
31 ⊕ C2

33 ⊕ C2
45 ⊕ C2

47 ⊕ C2
59 ⊕ C2

63 ⊕ C2
65 ⊕ C2

77

⊕ C2
79 ⊕ C2

91 ⊕ C2
95 ⊕ C2

97 ⊕ C2
109 ⊕ C2

111 ⊕ C2
123 ⊕ C2

127

⊕ C3
6 ⊕ C3

12 ⊕ C3
14 ⊕ C3

20 ⊕ C3
38 ⊕ C3

44 ⊕ C3
46 ⊕ C3

52

⊕ C3
70 ⊕ C3

76 ⊕ C3
78 ⊕ C3

84 ⊕ C3
102 ⊕ C3

108 ⊕ C3
110 ⊕ C3

116

⊕ C4
19 ⊕ C4

51 ⊕ C4
83 ⊕ C4

115

= S1
2,0 · S1

3,0 ⊕ S1
2,0 · S1

3,96 ⊕ S1
2,32 · S1

3,0 ⊕ S1
2,96 · S1

3,96

6.C trail equation for full Morus-640 173

⊕ S1
2,96 · S1

3,64 ⊕ S1
2,64 · S1

3,64 ⊕ S1
2,64 · S1

3,32 ⊕ S1
2,32 · S1

3,32 weight 3

⊕ S2
2,13 · S2

3,13 ⊕ S2
2,13 · S2

3,109 ⊕ S2
2,45 · S2

3,13 ⊕ S2
2,109 · S2

3,109

⊕ S2
2,45 · S2

3,45 ⊕ S2
2,109 · S2

3,77 ⊕ S2
2,77 · S2

3,45 ⊕ S2
2,77 · S2

3,77 weight 3

⊕ S3
2,20 · S3

3,20 ⊕ S3
2,20 · S3

3,116 ⊕ S3
2,52 · S3

3,20 ⊕ S3
2,116 · S3

3,116

⊕ S3
2,52 · S3

3,52 ⊕ S3
2,116 · S3

3,84 ⊕ S3
2,84 · S3

3,52 ⊕ S3
2,84 · S3

3,84 weight 3

⊕ S0
1,27 ⊕ S0

1,27 · S0
2,27 ⊕ S0

2,27 · S0
3,27 ⊕ S0

3,27 weight 1

⊕ S0
1,59 ⊕ S0

1,59 · S0
2,59 ⊕ S0

2,59 · S0
3,59 ⊕ S0

3,59 weight 1

⊕ S0
1,91 ⊕ S0

1,91 · S0
2,91 ⊕ S0

2,91 · S0
3,91 ⊕ S0

3,91 weight 1

⊕ S0
1,123 · S0

2,123 ⊕ S0
2,123 · S0

3,123 ⊕ S0
1,123 ⊕ S0

3,123 weight 1

⊕ S1
1,2 ⊕ S1

1,2 · S1
2,2 ⊕ S1

2,2 · S1
3,2 ⊕ S1

3,2 weight 1

⊕ S1
1,8 ⊕ S1

1,8 · S1
2,8 ⊕ S1

2,8 · S1
3,8 ⊕ S1

3,8 weight 1

⊕ S1
1,26 ⊕ S1

1,26 · S1
2,26 ⊕ S1

2,26 · S1
3,26 ⊕ S1

3,26 weight 1

⊕ S1
1,34 ⊕ S1

1,34 · S1
2,34 ⊕ S1

2,34 · S1
3,34 ⊕ S1

3,34 weight 1

⊕ S1
1,40 ⊕ S1

1,40 · S1
2,40 ⊕ S1

2,40 · S1
3,40 ⊕ S1

3,40 weight 1

⊕ S1
1,58 ⊕ S1

1,58 · S1
2,58 ⊕ S1

2,58 · S1
3,58 ⊕ S1

3,58 weight 1

⊕ S1
1,66 ⊕ S1

1,66 · S1
2,66 ⊕ S1

2,66 · S1
3,66 ⊕ S1

3,66 weight 1

⊕ S1
1,72 ⊕ S1

1,72 · S1
2,72 ⊕ S1

2,72 · S1
3,72 ⊕ S1

3,72 weight 1

⊕ S1
1,90 ⊕ S1

1,90 · S1
2,90 ⊕ S1

2,90 · S1
3,90 ⊕ S1

3,90 weight 1

⊕ S1
1,98 ⊕ S1

1,98 · S1
2,98 ⊕ S1

2,98 · S1
3,98 ⊕ S1

3,98 weight 1

⊕ S1
1,104 ⊕ S1

1,104 · S1
2,104 ⊕ S1

2,104 · S1
3,104 ⊕ S1

3,104 weight 1

⊕ S1
1,122 ⊕ S1

3,122 ⊕ S1
1,122 · S1

2,122 ⊕ S1
2,122 · S1

3,122 weight 1

⊕ S2
1,1 ⊕ S2

1,1 · S2
2,1 ⊕ S2

2,1 · S2
3,1 ⊕ S2

3,1 weight 1

⊕ S2
1,7 ⊕ S2

1,7 · S2
2,7 ⊕ S2

2,7 · S2
3,103 ⊕ S2

3,103 weight 1

⊕ S2
1,15 ⊕ S2

1,15 · S2
2,15 ⊕ S2

2,15 · S2
3,15 ⊕ S2

3,15 weight 1

⊕ S2
1,27 ⊕ S2

1,27 · S2
2,27 ⊕ S2

2,27 · S2
3,27 ⊕ S2

3,27 weight 1

⊕ S2
1,33 ⊕ S2

1,33 · S2
2,33 ⊕ S2

2,33 · S2
3,33 ⊕ S2

3,33 weight 1

⊕ S2
1,39 ⊕ S2

1,39 · S2
2,39 ⊕ S2

2,39 · S2
3,7 ⊕ S2

3,7 weight 1

⊕ S2
1,47 ⊕ S2

1,47 · S2
2,47 ⊕ S2

2,47 · S2
3,47 ⊕ S2

3,47 weight 1

⊕ S2
1,59 ⊕ S2

1,59 · S2
2,59 ⊕ S2

2,59 · S2
3,59 ⊕ S2

3,59 weight 1

⊕ S2
1,65 ⊕ S2

1,65 · S2
2,65 ⊕ S2

2,65 · S2
3,65 ⊕ S2

3,65 weight 1

⊕ S2
1,71 ⊕ S2

1,71 · S2
2,71 ⊕ S2

2,71 · S2
3,39 ⊕ S2

3,39 weight 1

⊕ S2
1,79 ⊕ S2

1,79 · S2
2,79 ⊕ S2

2,79 · S2
3,79 ⊕ S2

3,79 weight 1

⊕ S2
1,91 ⊕ S2

1,91 · S2
2,91 ⊕ S2

2,91 · S2
3,91 ⊕ S2

3,91 weight 1

174 cryptanalysis of morus

⊕ S2
1,97 ⊕ S2

1,97 · S2
2,97 ⊕ S2

2,97 · S2
3,97 ⊕ S2

3,97 weight 1

⊕ S2
1,103 ⊕ S2

1,103 · S2
2,103 ⊕ S2

2,103 · S2
3,71 ⊕ S2

3,71 weight 1

⊕ S2
1,111 ⊕ S2

1,111 · S2
2,111 ⊕ S2

2,111 · S2
3,111 ⊕ S2

3,111 weight 1

⊕ S2
1,123 ⊕ S2

3,123 ⊕ S2
2,123 · S2

3,123 ⊕ S2
1,123 · S2

2,123 weight 1

⊕ S3
1,14 ⊕ S3

1,14 · S3
2,14 ⊕ S3

2,14 · S3
3,14 ⊕ S3

3,14 weight 1

⊕ S3
1,46 ⊕ S3

1,46 · S3
2,46 ⊕ S3

2,46 · S3
3,46 ⊕ S3

3,46 weight 1

⊕ S3
1,78 ⊕ S3

1,78 · S3
2,78 ⊕ S3

2,78 · S3
3,78 ⊕ S3

3,78 weight 1

⊕ S3
1,110 ⊕ S3

3,110 ⊕ S3
1,110 · S3

2,110 ⊕ S3
2,110 · S3

3,110 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
0,32 · S2

1,32 weight 1

⊕ S2
0,64 · S2

1,64 weight 1

⊕ S2
0,96 · S2

1,96 weight 1

⊕ S2
2,31 · S2

3,31 weight 1

⊕ S2
2,63 · S2

3,63 weight 1

⊕ S2
2,95 · S2

3,95 weight 1

⊕ S2
2,127 · S2

3,127 weight 1

⊕ S2
3,32 · S2

4,0 weight 1

⊕ S2
3,64 · S2

4,32 weight 1

⊕ S2
3,96 · S2

4,64 weight 1

⊕ S2
3,0 · S2

4,96 weight 1

⊕ S3
0,7 · S3

1,7 weight 1

⊕ S3
0,39 · S3

1,39 weight 1

⊕ S3
0,71 · S3

1,71 weight 1

⊕ S3
0,103 · S3

1,103 weight 1

⊕ S3
2,6 · S3

3,6 weight 1

⊕ S3
2,12 · S3

3,12 weight 1

⊕ S3
2,38 · S3

3,38 weight 1

⊕ S3
2,44 · S3

3,44 weight 1

⊕ S3
2,70 · S3

3,70 weight 1

⊕ S3
2,76 · S3

3,76 weight 1

⊕ S3
2,102 · S3

3,102 weight 1

⊕ S3
2,108 · S3

3,108 weight 1

⊕ S4
2,19 · S4

3,19 weight 1

6.D trail equation for full Morus-1280 175

⊕ S4
2,51 · S4

3,51 weight 1

⊕ S4
2,83 · S4

3,83 weight 1

⊕ S4
2,115 · S4

3,115 weight 1

The total weight of the trail is 73.

6.d trail equation for full Morus-1280

C0
51 ⊕ C0

115 ⊕ C0
179 ⊕ C0

243 ⊕ C1
0 ⊕ C1

25 ⊕ C1
33 ⊕ C1

55

⊕ C1
64 ⊕ C1

89 ⊕ C1
97 ⊕ C1

119 ⊕ C1
128 ⊕ C1

153 ⊕ C1
161 ⊕ C1

183

⊕ C1
192 ⊕ C1

217 ⊕ C1
225 ⊕ C1

247 ⊕ C2
4 ⊕ C2

7 ⊕ C2
29 ⊕ C2

37

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C2

68 ⊕ C2
71 ⊕ C2

93 ⊕ C2
101 ⊕ C2

102

⊕ C2
110 ⊕ C2

115 ⊕ C2
132 ⊕ C2

135 ⊕ C2
157 ⊕ C2

165 ⊕ C2
166 ⊕ C2

174

⊕ C2
179 ⊕ C2

196 ⊕ C2
199 ⊕ C2

221 ⊕ C2
229 ⊕ C2

230 ⊕ C2
238 ⊕ C2

243

⊕ C3
11 ⊕ C3

20 ⊕ C3
42 ⊕ C3

50 ⊕ C3
75 ⊕ C3

84 ⊕ C3
106 ⊕ C3

114

⊕ C3
139 ⊕ C3

148 ⊕ C3
170 ⊕ C3

178 ⊕ C3
203 ⊕ C3

212 ⊕ C3
234 ⊕ C3

242

⊕ C4
24 ⊕ C4

88 ⊕ C4
152 ⊕ C4

216

= S1
2,0 · S1

3,192 ⊕ S1
2,0 · S1

3,0 ⊕ S1
2,64 · S1

3,0

⊕ S1
2,64 · S1

3,64 ⊕ S1
2,128 · S1

3,64 ⊕ S1
2,128 · S1

3,128

⊕ S1
2,192 · S1

3,128 ⊕ S1
2,192 · S1

3,192 weight 3

⊕ S2
2,4 · S2

3,4 ⊕ S2
2,68 · S2

3,4 ⊕ S2
2,68 · S2

3,68

⊕ S2
2,132 · S2

3,68 ⊕ S2
2,132 · S2

3,132 ⊕ S2
2,196 · S2

3,132

⊕ S2
2,196 · S2

3,196 ⊕ S2
2,4 · S2

3,196 weight 3

⊕ S2
2,102 · S2

3,38 ⊕ S2
2,102 · S2

3,102 ⊕ S2
2,166 · S2

3,102

⊕ S2
2,166 · S2

3,166 ⊕ S2
2,230 · S2

3,166 ⊕ S2
2,230 · S2

3,230

⊕ S2
2,38 · S2

3,230 ⊕ S2
2,38 · S2

3,38 weight 3

⊕ S3
2,42 · S3

3,42 ⊕ S3
2,106 · S3

3,42 ⊕ S3
2,106 · S3

3,106

⊕ S3
2,170 · S3

3,106 ⊕ S3
2,170 · S3

3,170 ⊕ S3
2,234 · S3

3,170

⊕ S3
2,234 · S3

3,234 ⊕ S3
2,42 · S3

3,234 weight 3

⊕ S0
1,51 · S0

2,51 ⊕ S0
1,51 ⊕ S0

2,51 · S0
3,51 ⊕ S0

3,51 weight 1

⊕ S0
1,115 · S0

2,115 ⊕ S0
1,115 ⊕ S0

2,115 · S0
3,115 ⊕ S0

3,115 weight 1

⊕ S0
1,179 · S0

2,179 ⊕ S0
1,179 ⊕ S0

2,179 · S0
3,179 ⊕ S0

3,179 weight 1

⊕ S0
1,243 · S0

2,243 ⊕ S0
1,243 ⊕ S0

2,243 · S0
3,243 ⊕ S0

3,243 weight 1

⊕ S1
1,25 · S1

2,25 ⊕ S1
1,25 ⊕ S1

2,25 · S1
3,25 ⊕ S1

3,25 weight 1

⊕ S1
1,33 · S1

2,33 ⊕ S1
1,33 ⊕ S1

2,33 · S1
3,33 ⊕ S1

3,33 weight 1

176 cryptanalysis of morus

⊕ S1
1,55 · S1

2,55 ⊕ S1
1,55 ⊕ S1

2,55 · S1
3,55 ⊕ S1

3,55 weight 1

⊕ S1
1,89 · S1

2,89 ⊕ S1
1,89 ⊕ S1

2,89 · S1
3,89 ⊕ S1

3,89 weight 1

⊕ S1
1,97 · S1

2,97 ⊕ S1
1,97 ⊕ S1

2,97 · S1
3,97 ⊕ S1

3,97 weight 1

⊕ S1
1,119 · S1

2,119 ⊕ S1
1,119 ⊕ S1

2,119 · S1
3,119 ⊕ S1

3,119 weight 1

⊕ S1
1,153 · S1

2,153 ⊕ S1
1,153 ⊕ S1

2,153 · S1
3,153 ⊕ S1

3,153 weight 1

⊕ S1
1,161 · S1

2,161 ⊕ S1
1,161 ⊕ S1

2,161 · S1
3,161 ⊕ S1

3,161 weight 1

⊕ S1
1,183 · S1

2,183 ⊕ S1
1,183 ⊕ S1

2,183 · S1
3,183 ⊕ S1

3,183 weight 1

⊕ S1
1,217 · S1

2,217 ⊕ S1
1,217 ⊕ S1

2,217 · S1
3,217 ⊕ S1

3,217 weight 1

⊕ S1
1,225 · S1

2,225 ⊕ S1
1,225 ⊕ S1

2,225 · S1
3,225 ⊕ S1

3,225 weight 1

⊕ S1
1,247 · S1

2,247 ⊕ S1
1,247 ⊕ S1

2,247 · S1
3,247 ⊕ S1

3,247 weight 1

⊕ S2
1,7 · S2

2,7 ⊕ S2
1,7 ⊕ S2

2,7 · S2
3,7 ⊕ S2

3,7 weight 1

⊕ S2
1,29 · S2

2,29 ⊕ S2
1,29 ⊕ S2

2,29 · S2
3,29 ⊕ S2

3,29 weight 1

⊕ S2
1,37 · S2

2,37 ⊕ S2
1,37 ⊕ S2

2,37 · S2
3,37 ⊕ S2

3,37 weight 1

⊕ S2
1,51 · S2

2,51 ⊕ S2
1,51 ⊕ S2

2,51 · S2
3,51 ⊕ S2

3,51 weight 1

⊕ S2
1,71 · S2

2,71 ⊕ S2
1,71 ⊕ S2

2,71 · S2
3,71 ⊕ S2

3,71 weight 1

⊕ S2
1,93 · S2

2,93 ⊕ S2
1,93 ⊕ S2

2,93 · S2
3,93 ⊕ S2

3,93 weight 1

⊕ S2
1,101 · S2

2,101 ⊕ S2
1,101 ⊕ S2

2,101 · S2
3,101 ⊕ S2

3,101 weight 1

⊕ S2
1,115 · S2

2,115 ⊕ S2
1,115 ⊕ S2

2,115 · S2
3,115 ⊕ S2

3,115 weight 1

⊕ S2
1,135 · S2

2,135 ⊕ S2
1,135 ⊕ S2

2,135 · S2
3,135 ⊕ S2

3,135 weight 1

⊕ S2
1,157 · S2

2,157 ⊕ S2
1,157 ⊕ S2

2,157 · S2
3,157 ⊕ S2

3,157 weight 1

⊕ S2
1,165 · S2

2,165 ⊕ S2
1,165 ⊕ S2

2,165 · S2
3,165 ⊕ S2

3,165 weight 1

⊕ S2
1,179 · S2

2,179 ⊕ S2
1,179 ⊕ S2

2,179 · S2
3,179 ⊕ S2

3,179 weight 1

⊕ S2
1,199 · S2

2,199 ⊕ S2
1,199 ⊕ S2

2,199 · S2
3,199 ⊕ S2

3,199 weight 1

⊕ S2
1,221 · S2

2,221 ⊕ S2
1,221 ⊕ S2

2,221 · S2
3,221 ⊕ S2

3,221 weight 1

⊕ S2
1,229 · S2

2,229 ⊕ S2
1,229 ⊕ S2

2,229 · S2
3,229 ⊕ S2

3,229 weight 1

⊕ S2
1,243 · S2

2,243 ⊕ S2
1,243 ⊕ S2

2,243 · S2
3,243 ⊕ S2

3,243 weight 1

⊕ S3
1,11 · S3

2,11 ⊕ S3
1,11 ⊕ S3

2,11 · S3
3,11 ⊕ S3

3,11 weight 1

⊕ S3
1,75 · S3

2,75 ⊕ S3
1,75 ⊕ S3

2,75 · S3
3,75 ⊕ S3

3,75 weight 1

⊕ S3
1,139 · S3

2,139 ⊕ S3
1,139 ⊕ S3

2,139 · S3
3,139 ⊕ S3

3,139 weight 1

⊕ S3
1,203 · S3

2,203 ⊕ S3
1,203 ⊕ S3

2,203 · S3
3,203 ⊕ S3

3,203 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
0,64 · S2

1,64 weight 1

⊕ S2
0,128 · S2

1,128 weight 1

6.D trail equation for full Morus-1280 177

⊕ S2
0,192 · S2

1,192 weight 1

⊕ S3
0,230 · S3

1,230 weight 1

⊕ S2
2,46 · S2

3,46 weight 1

⊕ S2
2,110 · S2

3,110 weight 1

⊕ S2
2,174 · S2

3,174 weight 1

⊕ S2
2,238 · S2

3,238 weight 1

⊕ S2
3,64 · S2

4,0 weight 1

⊕ S2
3,128 · S2

4,64 weight 1

⊕ S2
3,192 · S2

4,128 weight 1

⊕ S2
3,0 · S2

4,192 weight 1

⊕ S3
0,38 · S3

1,38 weight 1

⊕ S3
0,102 · S3

1,102 weight 1

⊕ S3
0,166 · S3

1,166 weight 1

⊕ S3
2,20 · S3

3,20 weight 1

⊕ S3
2,50 · S3

3,50 weight 1

⊕ S3
2,84 · S3

3,84 weight 1

⊕ S3
2,114 · S3

3,114 weight 1

⊕ S3
2,148 · S3

3,148 weight 1

⊕ S3
2,178 · S3

3,178 weight 1

⊕ S3
2,212 · S3

3,212 weight 1

⊕ S3
2,242 · S3

3,242 weight 1

⊕ S4
2,24 · S4

3,24 weight 1

⊕ S4
2,88 · S4

3,88 weight 1

⊕ S4
2,152 · S4

3,152 weight 1

⊕ S4
2,216 · S4

3,216 weight 1

The total weight of the trail is 76.

Part III

V E R I F Y I N G

7A C O Q P R O O F O F T H E C O R R E C T N E S S O F X 2 5 5 1 9 I N
T W E E T N A C L

In this chapter we provide a computer-verified proof that the X25519

implementation in TweetNaCl correctly matches RFC 7748 and that
RFC 7748 correctly computes a scalar multiplication on the elliptic
curve Curve25519.

7.1 introduction

The Networking and Cryptography library (NaCl) [BLS12] is an easy-
to-use, high-security, high-speed cryptography library. It uses special-
ized code for different platforms, which makes it rather complex and
hard to audit. TweetNaCl [Ber+15b] is a compact re-implementation in
C of the core functionalities of NaCl and is claimed to be ªthe first cryp-
tographic library that allows correct functionality to be verified by auditors
with reasonable effortº [Ber+15b]. The original paper presenting Tweet-
NaCl describes some effort to support this claim, for example, formal
verification of memory safety, but does not actually prove correctness
of any of the primitives implemented by the library.

One core component of TweetNaCl (and NaCl) is the key-exchange
protocol X25519 presented by Bernstein in [Ber06b]. This protocol
is standardized in RFC 7748 and used by a wide variety of applica-
tions [Thi] such as Secure Shell (SSH), Signal Protocol, Tor, Zcash, and
Transport Layer Security (TLS) to establish a shared secret over an inse-
cure channel. The X25519 key-exchange protocol is an x-coordinate-
only elliptic-curve Merkle-Diffie-Hellman key exchange using the
Montgomery curve E : y2 = x3 + 486662x2 + x over the field F2255−19.
Note that originally, the name ªCurve25519º referred to the key-
exchange protocol, but Bernstein suggested to rename the protocol to
X25519 and to use the name Curve25519 for the underlying elliptic
curve [Ber08a]. We use this updated terminology in this chapter.

contributions . In short, in this chapter we provide a computer-
verified proof that the X25519 implementation in TweetNaCl matches
the mathematical definition of the function given in [Ber06b, Sec. 2].
This proof is done in three steps:

1. We first formalize RFC 7748 [LHT] in Coq [Coq].

2. We prove equivalence of the C implementation of X25519 to
our RFC formalization. This part of the proof uses the Verifiable
Software Toolchain (VST) [App12] to establish a link between C
and Coq. VST uses separation logic [Hoa69; Rey02] to show that

181

182 a coq proof of the correctness of x25519 in tweetnacl

the semantics of the program satisfies a functional specification
in Coq. To the best of our knowledge, this is the first time that VST

is used in the formal proof of correctness of an implementation
of an asymmetric cryptographic primitive.

3. We prove that the Coq formalization of the RFC matches the
mathematical definition of X25519 as given in [Ber06b, Sec. 2].
We do this by extending the Coq library for elliptic curves [BS14]
by Bartzia and Strub to support Montgomery curves, and in
particular Curve25519.

To our knowledge, this verification effort is the first to not just
connect a low-level implementation to a higher-level implementation
(or ªspecificationº), but to prove correctness all the way up to the
mathematical definition in terms of scalar multiplication on an elliptic
curve. As a consequence, the result of this chapter can readily be used
in mechanized proofs arguing about the security of cryptographic
constructions on the more abstract level of operations in groups and
related problems, like the elliptic-curve discrete-logarithm (ECDLP) or
elliptic-curve Diffie-Hellman (ECDH) problem. Also, connecting our
formalization of the RFC to the mathematical definition significantly
increases trust into the correctness of the formalization and reduces
the effort of manually auditing the formalization.

the bigger picture of high-assurance crypto. This work
fits into the bigger area of high-assurance cryptography, i. e., a line of
work that applies techniques and tools from formal methods to obtain
computer-verified guarantees for cryptographic software. Traditionally,
high-assurance cryptography is concerned with three main properties
of cryptographic software:

1. verifying correctness of cryptographic software, typically
against a high-level specification;

2. verifying implementation security and in particular security
against timing attacks; and

3. verifying cryptographic security notions of primitives and
protocols through computer-checked reductions from some
assumed-to-be-hard mathematical problem.

A recent addition to this triplet (or rather an extension of implemen-
tation security) is security also against attacks exploiting speculative
execution; see, e. g., [Cau+20]. This chapter targets only the first point
and attempts to make results immediately usable for verification efforts
of cryptographic security.

Verification of implementation security is probably equally impor-
tant as verification of correctness, but working on the C language level
as we do in this chapter is not helpful. To obtain guarantees of security

7.1 introduction 183

against timing-attack we recommend verifying compiled code on LLVM
level with, e. g., ct-verif [Alm+16], or even better on binary level with,
e. g., Binsec/Rel [LAD20].

related work . The field of computer-aided cryptography, i. e.,
using computer-verified proofs to strengthen our trust into crypto-
graphic constructions and cryptographic software, has seen massive
progress in the recent past. This progress, the state of the art, and
future challenges have recently been compiled in a SoK paper by Bar-
bosa, Barthe, Bhargavan, Blanchet, Cremers, Liao, and Parno [Bar+19].
This SoK paper, in Section III.C, also gives an overview of verification
efforts of X25519 software. What all the previous approaches have in
common is that they prove correctness by verifying that some low-level
implementation matches a higher-level specification. This specification
is kept in terms of a sequence of finite-field operations, typically close
to the pseudocode in RFC 7748.

There are two general approaches to establish this link between low-
level code and higher-level specification: Synthesize low-level code
from the specification or write the low-level code by hand and prove
that it matches the specification.

The X25519 implementation from the Evercrypt project [Pro+19] uses
a low-level language called Vale that translates directly to assembly
and proves equivalence to a high-level specification in F∗. In [ZBB16],
Zinzindohoué, Bartzia, and Bhargavan describe a verified extensible
library of elliptic curves in F* [Pro+17]. This served as ground work
for the cryptographic library HACL* [Zin+17] used in the Network
Security Services (NSS) suite from Mozilla. The approach they use is
a combination of proving and synthesising: A fairly low-level imple-
mentation written in Low∗ is proven to be equivalent to a high-level
specification in F∗. The Low∗ code is then compiled to C using an
unverified and thus trusted compiler called Kremlin. The difference
between this approach and ours is highlighted in Figure 7.1.

Spec

Clight

C code

generated

verified

Coq
Spec

Low*

C code

generated

verified

F*

Figure 7.1: The VST approach (ours, on the left) compared to the F*/Low*
approach (on the right, [Pro+19; ZBB16; Pro+17; Zin+17]).

184 a coq proof of the correctness of x25519 in tweetnacl

Coq not only allows verification but also synthesis [Chl10]. Erbsen,
Philipoom, Gross, and Chlipala make use of it to have correct-by-
construction finite-field arithmetic, which is used to synthesize certified
elliptic-curve crypto software [Phi18; Erb17; Erb+16]. This software
suite is now being used in BoringSSL [Erb+19].

Our approach

Spec

Verified C code

Verification

[Erb+19]

Spec

Verified C code

Synthesis

Figure 7.2: Our approach compared to [Erb+19].

All of these X25519 verification efforts use a clean-slate approach
to obtain code and proofs (e. g., see Figure 7.2). Our effort targets
existing software; we are aware of only one earlier work verifying
existing X25519 software: In [Che+14], Chen, Hsu, Lin, Schwabe, Tsai,
Wang, Yang, and Yang present a mechanized proof of two assembly-
level implementations of the core function of X25519. Their proof
takes a different approach from ours. It uses heavy annotation of the
assembly-level code in order to ªguideº a SAT solver; also, it does
not cover the full X25519 functionality and does not make the link
to the mathematical definition from [Ber06b]. As a consequence, this
work would not find bugs in any of the routines processing the scalar
(like ªclampingº, see Section 7.2.2), bugs in the serialization routines
or, maybe most importantly, bugs in the high-level specification that
the code is verified against.

Finally, in terms of languages and tooling the work closest to what
we present here is the proof of correctness of OpenSSL’s implementa-
tions of HMAC [Ber+15a], and mbedTLS’ implementations of HMAC-
DRBG [Ye+17] and SHA-256 [App15]. As those are all symmetric primi-
tives without the rich mathematical structure of finite fields and elliptic
curves the actual proofs are quite different.

reproducing the proofs . To maximize reusability of our results
we place the code of our formal proof presented in this chapter into the
public domain. It is available in the associated materials of this thesis
(Section 1.3) and at https://doi.org/10.5281/zenodo.4439686 with
instructions of how to compile and verify our proof. A description of
the content of the code archive is provided in Section 7.C.

organization of this chapter . Section 7.2 gives the necessary
background on Curve25519 and X25519 implementations and a brief
explanation of how formal verification works. Section 7.3 provides

https://doi.org/10.5281/zenodo.4439686

7.1 introduction 185

our Coq formalization of X25519 as specified in RFC 7748 [LHT]. Sec-
tion 7.4 provides the specification of X25519 in TweetNaCl and some
of the proof techniques used to show the correctness with respect
to RFC 7748 [LHT]. Section 7.5 describes our extension of the formal
library by Bartzia and Strub and the proof of correctness of X25519

implementation with respect to Bernstein’s specification [Ber08a]. Fi-
nally, in Section 7.6 we discuss the trusted code base of our proofs
and conclude with some lessons learned about TweetNaCl and with
sketching the effort required to extend our work to other elliptic-curve
software.

Figure 7.3 shows a graph of dependencies of the proofs. C source
files are represented by .C while .V corresponds to Coq files. In a
nutshell, we formalize X25519 into a Coq function RFC, and we write a
specification in separation logic with VST. The first step of CompCert
compilation (clightgen) is used to translate the C source code into
a DSL in Coq (Clight). By using VST, we step through the translated
instructions and verify that the program satisfies the specification.
Additionally, we formally define the scalar multiplication over elliptic
curves and show that, under the same preconditions as used in the
specification, RFC computes the desired results.

Section 7.3 Section 7.4

Section 7.5

Definition

RFC
.V

code

Prog

.C

code

Prog

.V

Specification

Pre:
s[{n}]← n ∈ N,
s[{p}]← P ∈ E(Fp2)

Post:
s[{q}]← RFC(n, P) .V

Proof

{Pre} Prog {Post}

✓

.V

Definition

n · P
.V

Proof

Pre→
RFC(n, P) = n · P

✓

.V

clightgen

Figure 7.3: Structure of the proof.

186 a coq proof of the correctness of x25519 in tweetnacl

7.2 preliminaries

In this section, we first give a brief summary of the mathematical
background on elliptic curves. We then describe X25519 and its imple-
mentation in TweetNaCl. Finally, we provide a brief description of the
formal tools we use in our proofs.

7.2.1 Arithmetic on Montgomery curves

definition 7 .2 .1. Given a field K, and a, b ∈ K such that a2 ̸= 4 and
b ̸= 0, Ma,b is the Montgomery curve defined over K with equation

Ma,b : by2 = x3 + ax2 + x.

definition 7 .2 .2. For any algebraic extension Ł ⊇ K, we call Ma,b(Ł)
the set of Ł-rational points, defined as

Ma,b(Ł) = {O} ∪ {(x, y) ∈ Ł× Ł | by2 = x3 + ax2 + x}.

Here, the additional element O denotes the point at infinity.

For Ma,b over a finite field Fp, the parameter b is known as the
ªtwisting factorº. For b′ ∈ Fp\{0} and b′ ̸= b, the curves Ma,b and
Ma,b′ are isomorphic via (x, y) 7→ (x,

√
b/b′ · y).

definition 7 .2 .3. When b′/b is not a square in Fp, Ma,b′ is a
quadratic twist of Ma,b, i.e., a curve that is isomorphic over Fp2 [CS18].

Points in Ma,b(K) can be equipped with a structure of an abelian
group with the addition operation + and with neutral element the
point at infinity O. For a point P ∈ Ma,b(K) and a positive integer n
we obtain the scalar product

n · P = P + · · ·+ P
︸ ︷︷ ︸

n times

.

In order to efficiently compute the scalar multiplication we use an al-
gorithm similar to square-and-multiply: the Montgomery ladder where
the basic operations are differential addition and doubling [Mon87].

We consider x-coordinate-only operations. Throughout the computa-
tion, these x-coordinates are kept in projective representation (X : Z),
with x = X/Z; the point at infinity is represented as (1 : 0). See
Section 7.5.1 for more details. We define the operation:

xDBL&ADD : (xQ−P, (XP : ZP), (XQ : ZQ)) 7→
((X2·P : Z2·P), (XP+Q : ZP+Q))

A pseudocode description of the Montgomery ladder using this
xDBL&ADD routine is given in Algorithm 7. The main loop iterates

7.2 preliminaries 187

over the bits of the scalar n. The kth iteration conditionally swaps the
arguments P and Q of xDBL&ADD depending on the value of the kth bit
of n. We use a conditional swap CSWAP to change the arguments of the
above function while keeping the same body of the loop. Given a pair
(P0, P1) and a bit b, CSWAP returns the pair (Pb, P1−b).

Algorithm 7. Montgomery ladder for scalar mult.

Input: x-coordinate xP of a point P, scalar n with n < 2m

Output: x-coordinate xQ of Q = n · P
Q = (XQ : ZQ)← (1 : 0)
R = (XR : ZR)← (xP : 1)
for k := m down to 1 do

(Q, R)← CSWAP((Q, R), kth bit of n)
(Q, R)← xDBL&ADD(xP, Q, R)
(Q, R)← CSWAP((Q, R), kth bit of n)

end forreturn XQ/ZQ

7.2.2 The X25519 key exchange

From now on let Fp be the field with p = 2255 − 19 elements. We
consider the elliptic curve E over Fp defined by the equation y2 =
x3 + 486662x2 + x. For every x ∈ Fp there exists a point P in E(Fp2)
such that x is the x-coordinate of P.

The core of the X25519 key-exchange protocol is a scalar-multipli-
cation function, which we will also refer to as X25519. This function
receives as input two arrays of 32 bytes each. One of them is inter-
preted as the little-endian encoding of a non-negative 256-bit integer n
(see Section 7.3). The other is interpreted as the little-endian encoding
of the x-coordinate xP ∈ Fp of a point in E(Fp2), using the standard
mapping of integers modulo p to elements in Fp.

The X25519 function first computes a scalar n′ from n by setting
bits at position 0, 1, 2 and 255 to ‘0’; and at position 254 to ‘1’. This
operation is often called ªclampingº of the scalar n. Note that n′ ∈
2254 + 8{0, 1, . . . , 2251 − 1}. X25519 then computes the x-coordinate of
n′ · P.

RFC 7748 [LHT] standardizes the X25519 Diffie±Hellman key-
exchange algorithm. Given the base point B where XB = 9, each party
generates a secret random number sa (respectively sb), and computes
XPa (respectively XPb

), the x-coordinate of PA = sa · B (respectively
PB = sb · B). The parties exchange XPa and XPb

and compute their
shared secret sa · sb · B with X25519 on sa and XPb

(respectively sb and
XPa).

188 a coq proof of the correctness of x25519 in tweetnacl

7.2.3 TweetNaCl specifics

As its name suggests, TweetNaCl aims for code compactness (ªa crypto
library in 100 tweetsº). As a result it uses a few defines and typedefs to
gain precious bytes while still remaining human-readable.

#define FOR(i,n) for (i = 0;i < n;++i)
#define sv static void
typedef unsigned char u8;
typedef long long i64;

TweetNaCl functions take pointers as arguments. By convention the
first one points to the output array o. It is then followed by the input
arguments.

For a seamless use of VST, indexes used in for loops have to be of
type int instead of i64. We changed the code to allow our proofs to
carry through. We believe this does not affect the correctness of the
original code. A complete diff of our modifications to TweetNaCl can
be found in Section 7.A.

7.2.4 X25519 in TweetNaCl

We now describe the implementation of X25519 in TweetNaCl.

arithmetic in F2255−19 . In X25519, all computations are per-
formed in Fp. Throughout the computation, elements of that field
are represented in radix 216, i. e., an element A is represented as
(a0, . . . , a15), with A = ∑

15
i=0 ai216i. The individual ªlimbsº ai are rep-

resented as 64-bit long long variables:
typedef i64 gf[16];

The conversion from the input byte array to this representation in
radix 216 is done with the unpack25519 function.

The radix-216 representation in limbs of 64 bits is highly redundant;
for any element A ∈ F2255−19 there are multiple ways to represent A
as (a0, . . . , a15). This is used to avoid or delay carry handling in basic
operations such as Addition (A), subtraction (Z), multiplication (M) and
squaring (S). After a multiplication, limbs of the result o are too large
to be used again as input. Two calls to car25519 at the end of M takes
care of the carry propagation.

Inverses in F2255−19 are computed with inv25519. This function uses
exponentiation by p− 2 = 2255 − 21, computed with the square-and-
multiply algorithm.
sel25519 implements a constant-time conditional swap (CSWAP) by

applying a mask between two fields elements.
Finally, we need the pack25519 function, which converts from the

internal redundant radix-216 representation to a unique byte array
representing an integer in {0, . . . , p− 1} in little-endian format. This
function is considerably more complex as it needs to convert to a

7.2 preliminaries 189

unique representation, i. e., also fully reduce modulo p and remove the
redundancy of the radix-216 representation.

The C definitions of those functions are available in Section 7.A.

the montgomery ladder . With these low-level arithmetic and
helper functions defined, we can now turn our attention to the core
of the X25519 computation: the crypto_scalarmult API function of
TweetNaCl, which is implemented through the Montgomery ladder.

1 int crypto_scalarmult(u8 *q,
2 const u8 *n,
3 const u8 *p)
4 {
5 u8 z[32];
6 i64 r;
7 int i;
8 gf x,a,b,c,d,e,f;
9 FOR(i,31) z[i]=n[i];

10 z[31]=(n[31]&127)|64;
11 z[0]&=248;
12 unpack25519(x,p);
13 FOR(i,16) {
14 b[i]=x[i];
15 d[i]=a[i]=c[i]=0;
16 }
17 a[0]=d[0]=1;
18 for(i=254;i>=0;--i) {
19 r=(z[i>>3]>>(i&7))&1;
20 sel25519(a,b,r);
21 sel25519(c,d,r);
22 A(e,a,c);
23 Z(a,a,c);
24 A(c,b,d);
25 Z(b,b,d);
26 S(d,e);
27 S(f,a);
28 M(a,c,a);
29 M(c,b,e);
30 A(e,a,c);
31 Z(a,a,c);
32 S(b,a);
33 Z(c,d,f);
34 M(a,c,_121665);
35 A(a,a,d);
36 M(c,c,a);
37 M(a,d,f);
38 M(d,b,x);
39 S(b,e);
40 sel25519(a,b,r);
41 sel25519(c,d,r);
42 }
43 inv25519(c,c);
44 M(a,a,c);
45 pack25519(q,a);
46 return 0;
47 }

Note that lines 10 & 11 represent the ªclampingº operation. the
sequence of arithmetic operations in lines 22 through 39 implement
the xDBL&ADD routine. Additionally, on line 34 the constant _121665 of
type i64 represents the value 121665 = a−2

4 from curve25519.

190 a coq proof of the correctness of x25519 in tweetnacl

7.2.5 Coq, separation logic, and VST

Chapter 3 provides a comprehensive introduction to the Coq, the
separation logic, and the use of VST. In the following, we provide the
reader with a brief summary.

Coq [Coq] is an interactive theorem prover based on type theory.
It provides an expressive formal language to write mathematical def-
initions, algorithms, and theorems together with their proofs. It has
been used in the proof of the four-color theorem [Gon08], and it is
also the system underlying the CompCert formally verified C com-
piler [Ler09a]. Unlike systems like F* [Pro+17], Coq does not rely on
an SMT solver in its trusted code base. It uses its type system to verify
the applications of hypotheses, lemmas, and theorems [How95].

Hoare-Floyd logic is a formal system which allows reasoning about
programs. It uses triples such as

{Pre} Prog {Post}

where Pre and Post are assertions and Prog is a fragment of code. It is
read as ªwhen the precondition Pre is met, executing Prog will yield
postcondition Postº. We use compositional rules to prove the truth
value of a Hoare triple. For example, here is the rule for sequential
composition:

{P} C1 {Q} {Q} C2 {R}Hoare-Seq
{P} C1; C2 {R}

Separation logic is an extension of Hoare logic which allows reasoning
about pointers and memory manipulation. Reasoning in separation
logic assumes that certain memory regions are non-overlapping. We
discuss this limitation further in Section 7.4.1.

The Verifiable Software Toolchain (VST) [Cao+18] is a framework
which uses separation logic (proven correct with respect to CompCert
semantics) to prove the functional correctness of C programs. The first
step consists of translating the source code into Clight, an intermediate
representation used by CompCert. For such purpose we use the parser
of CompCert called clightgen. In a second step one defines the Hoare
triple representing the specification of the piece of software one wants
to prove. With the help of VST we then use the strongest-postcondition
approach to prove the correctness of the triple. This can be seen as a
forward symbolic execution of the program.

7.3 formalizing x25519 from rfc 7748

In this section we present our formalization of RFC 7748 [LHT].

The specification of X25519 in RFC 7748 is formalized by the function RFC

in Coq.

7.3 formalizing x25519 from rfc 7748 191

More specifically, we formalized X25519 with the following defini-
tion:

Definition RFC (n: list Z) (p: list Z) : list Z :=
let k := decodeScalar25519 n in
let u := decodeUCoordinate p in
let t := montgomery_rec_swap
255 (* iterate 255 times *)
k (* clamped n *)
1 (* x2 *)
u (* x3 *)
0 (* z2 *)
1 (* z3 *)
0 (* dummy *)
0 (* dummy *)
u (* x1 *)
0 (* previous bit = 0 *) in

let a := get_a t in
let c := get_c t in
let o := ZPack25519 (Z.mul a (ZInv25519 c))
in encodeUCoordinate o.

In this definition montgomery_rec_swap is a generic ladder (defined
below) over a type T. In the case of RFC above, we instantiate it over
integers.

Fixpoint montgomery_rec_swap (m : nat) (z : T')
(a: T) (b: T) (c: T) (d: T) (e: T) (f: T) (x: T) (swap:Z) :
(* a: x2 *)
(* b: x3 *)
(* c: z2 *)
(* d: z3 *)
(* e: temporary var *)
(* f: temporary var *)
(* x: x1 *)
(* swap: previous bit value *)
(T * T * T * T * T * T) :=
match m with
| S n ⇒
let r := Getbit (Z.of_nat n) z in
(* k_t = (k >> t) & 1 *)

let swap := Z.lxor swap r in
(* swap ^= k_t *)

let (a, b) := (Sel25519 swap a b, Sel25519 swap b a) in
(* (x2, x3) = cswap(swap, x2, x3) *)

let (c, d) := (Sel25519 swap c d, Sel25519 swap d c) in
(* (z2, z3) = cswap(swap, z2, z3) *)

let e := a + c in (* A = x2 + z2 *)
let a := a - c in (* B = x2 - z2 *)
let c := b + d in (* C = x3 + z3 *)
let b := b - d in (* D = x3 - z3 *)

let d := e2 in (* AA = A2
*)

let f := a2 in (* BB = B2
*)

let a := c * a in (* CB = C * B *)
let c := b * e in (* DA = D * A *)

let e := a + c in (* x3= (DA + CB)2
*)

let a := a - c in (* z3= x1* (DA - CB)2
*)

let b := a2 in (* z3= x1* (DA - CB)2
*)

let c := d - f in (* E = AA - BB *)
let a := c * C_121665 in (* z2 = E * (AA + a24 * E) *)
let a := a + d in (* z2 = E * (AA + a24 * E) *)
let c := c * a in (* z2 = E * (AA + a24 * E) *)
let a := d * f in (* x2 = AA * BB *)

192 a coq proof of the correctness of x25519 in tweetnacl

let d := b * x in (* z3 = x1* (DA - CB)2
*)

let b := e2 in (* x3 = (DA + CB)2
*)

montgomery_rec_swap n z a b c d e f x r
(* swap = k_t *)

| 0%nat ⇒
let (a, b) := (Sel25519 swap a b, Sel25519 swap b a) in

(* (x2, x3) = cswap(swap, x2, x3) *)
let (c, d) := (Sel25519 swap c d, Sel25519 swap d c) in

(* (z2, z3) = cswap(swap, z2, z3) *)
(a,b,c,d,e,f)

end.

The comments in the ladder represent the text from the RFC which
our formalization matches perfectly. In order to optimize the number
of calls to CSWAP (defined in Section 7.2.1) the RFC uses an additional
variable to decide whether a conditional swap is required or not.

Later in our proof we use a simpler description of the ladder
(montgomery_rec) which follows strictly the Algorithm 7 and prove
those ladders equivalent.

RFC 7748 describes the calculations done in X25519 as follows: ªTo
implement the X25519(k, u) [...] functions (where k is the scalar and u is the
u-coordinate), first decode k and u and then perform the following procedure,
which is taken from [curve25519] and based on formulas from [montgomery].
All calculations are performed in GF(p), i.e., they are performed modulo
p.º [LHT]

Operations used in the Montgomery ladder of or Coq formaliza-
tion RFC are performed on integers (See Section 7.B.2). The reduction
modulo 2255 − 19 is deferred to the very end as part of the ZPack25519

operation.
We now turn our attention to the decoding and encoding of the byte

arrays. We define the little-endian projection to integers as follows.

definition 7 .3 .1. Let ZofList : Z → list Z → Z, a function given
n and a list l returns its little-endian decoding with radix 2n.

Fixpoint ZofList {n:Z} (a:list Z) : Z :=
match a with
| [] ⇒ 0
| h :: q ⇒ h + 2n

* ZofList q
end.

Similarly, we define the projection from integers to little-endian lists.

definition 7 .3 .2. Let ListofZ32 : Z → Z → list Z, given n and a
returns a’s little-endian encoding as a list with radix 2n.

Fixpoint ListofZn_fp {n:Z} (a:Z) (f:nat) : list Z :=
match f with
| 0%nat ⇒ []
| S fuel ⇒ (a mod 2n) :: ListofZn_fp (a/2n) fuel

end.

7.4 proving equivalence of x25519 in c and coq 193

Definition ListofZ32 {n:Z} (a:Z) : list Z :=
ListofZn_fp n a 32.

In order to increase the trust in our formalization, we prove that
ListofZ32 and ZofList are inverse to each other.

Lemma ListofZ32_ZofList_Zlength: forall (l:list Z),
Forall (fun x ⇒ 0 ≤ x < 2n) l →
Zlength l = 32 →
ListofZ32 n (ZofList n l) = l.

Note that the fuel is used to guarantee an output list of 32

elements. This allows us to prove that for all list of 32 bytes,
ListofZn_fp (ZofList L) = L.

With those tools at hand, we formally define the decoding and
encoding as specified in the RFC.

Definition decodeScalar25519 (l: list Z) : Z :=
ZofList 8 (clamp l).

Definition decodeUCoordinate (l: list Z) : Z :=
ZofList 8 (upd_nth 31 l (Z.land (nth 31 l 0) 127)).

Definition encodeUCoordinate (x: Z) : list Z :=
ListofZ32 8 x.

In the definition of decodeScalar25519, clamp is taking care of set-
ting and clearing the selected bits as stated in the RFC and described
in Section 7.2.2.

7.4 proving equivalence of x25519 in c and coq

In this section we outline the structure of our proofs of the following
theorem:

The implementation of X25519 in TweetNaCl (crypto_scalarmult)
matches the specifications of RFC 7748 [LHT] (RFC).

More formally:

Theorem body_crypto_scalarmult:
(* VST boiler plate. *)
semax_body
(* Global variables used in the code. *)
Vprog
(* Hoare triples for function calls. *)
Gprog
(* Clight AST of the function we verify. *)
f_crypto_scalarmult_curve25519_tweet
(* Our Hoare triple, see below. *)
crypto_scalarmult_spec.

Using our formalization of RFC 7748 (in Section 7.3) we specify the
Hoare triple before proving its correctness with VST (in Section 7.4.1).
We provide an example of equivalence of operations over different
number representations (in Section 7.4.2). Then, we describe efficient
techniques used in some of our more complex proofs (in Section 7.4.3).

194 a coq proof of the correctness of x25519 in tweetnacl

7.4.1 Applying the Verifiable Software Toolchain

We now turn our focus to the formal specification of
crypto_scalarmult. We use our definition of X25519 from the RFC

in the Hoare triple and prove its correctness.

specifications . We show the soundness of TweetNaCl by proving
a correspondence between the C version of TweetNaCl and the same
code as a pure Coq function. This defines the equivalence between the
Clight representation and our Coq definition of the ladder (RFC).

Definition crypto_scalarmult_spec :=
DECLARE _crypto_scalarmult_curve25519_tweet
WITH
v_q: val, v_n: val, v_p: val, c121665:val,
sh : share,
q : list val, n : list Z, p : list Z

(*--*)
PRE [_q OF (tptr tuchar),

_n OF (tptr tuchar),
_p OF (tptr tuchar)]

PROP (writable_share sh;

Forall (λ x 7→ 0 ≤ x < 28) p;

Forall (λ x 7→ 0 ≤ x < 28) n;
Zlength q = 32; Zlength n = 32; Zlength p = 32)

LOCAL(temp _q v_q; temp _n v_n; temp _p v_p;
gvar __121665 c121665)

SEP (sh[{ v_q }]←(uch32)− q;

sh[{ v_n }]←(uch32)− mVI n;

sh[{ v_p }]←(uch32)− mVI p;

Ews[{ c121665 }]←(lg16)− mVI64 c_121665)
(*--*)
POST [tint]

PROP (Forall (λ x 7→ 0 ≤ x < 28) (RFC n p);
Zlength (RFC n p) = 32)

LOCAL(temp ret_temp (Vint Int.zero))

SEP (sh[{ v_q }]←(uch32)− mVI (RFC n p);

sh[{ v_n }]←(uch32)− mVI n;

sh[{ v_p }]←(uch32)− mVI p;

Ews[{ c121665 }]←(lg16)− mVI64 c_121665)

In this specification we state preconditions like:
PRE: _p OF (tptr tuchar)

The function crypto_scalarmult takes as input three pointers
to arrays of unsigned bytes (tptr tuchar) _p, _q and _n.
LOCAL: temp _p v_p

Each pointer represents an address v_p, v_q and v_n.
SEP: sh [{ v_p }]←(uch32)− mVI p

In the memory share sh, the address v_p points to a list of integer
values mVI p.
Ews [{ c121665 }]←(lg16)− mVI64 c_121665

In the global memory share Ews, the address c121665 points to a
list of 16 64-bit integer values corresponding to a−2

4 = 121665.
PROP: Forall (fun x 7→ 0 ≤ x < 28) p

In order to consider all the possible inputs, we assume each ele-
ment of the list p to be bounded by 0 included and 28 excluded.

7.4 proving equivalence of x25519 in c and coq 195

PROP: Zlength p = 32

We also assume that the length of the list p is 32. This defines
the complete representation of u8[32].

As postcondition we have conditions like:
POST: tint
The function crypto_scalarmult returns an integer.
LOCAL: temp ret_temp (Vint Int.zero)

The returned integer has value 0.
SEP: sh [{ v_q }]←(uch32)− mVI (RFC n p)

In the memory share sh, the address v_q points to a list of
integer values mVI (RFC n p) where RFC n p is the result of the
crypto_scalarmult of n and p.
PROP: Forall (fun x 7→ 0 ≤ x < 28) (RFC n p)

PROP: Zlength (RFC n p) = 32

We show that the computation for RFC fits in u8[32].
crypto_scalarmult computes the same result as RFC in Coq pro-

vided that inputs are within their respective bounds: arrays of 32

bytes.
The correctness of this specification is formally proven in Coq as

Theorem body_crypto_scalarmult.

memory aliasing . The semicolon in the SEP parts of the Hoare
triples represents the separating conjunction (often written as a star),
which means that the memory shares of q, n and p do not overlap. In
other words, we only prove correctness of crypto_scalarmult when
it is called without aliasing. But for other TweetNaCl functions, like
the multiplication function M(o,a,b), we cannot ignore aliasing, as it
is called in the ladder in an aliased manner.

In VST, a simple specification of this function will assume that the
pointer arguments point to non-overlapping space in memory. When
called with three memory shares (o, a, b), the three of them will be
consumed. However assuming this naive specification when M(o,a,a)

is called (squaring), the first two memory shares (o, a) are consumed
and VST will expect a third memory shares (a) which does not exist
anymore. Examples of such cases are illustrated in Figure 7.4.

As a result, a function must either have multiple specifications or
specify which aliasing case is being used. The first option would
require us to do very similar proofs multiple times for a same function.
We chose the second approach: for functions with 3 arguments, named
hereafter o, a, b, we define an additional parameter k with values in
{0, 1, 2, 3}:

• if k = 0 then o and a are aliased,
• if k = 1 then o and b are aliased,
• if k = 2 then a and b are aliased,
• else there is no aliasing.

196 a coq proof of the correctness of x25519 in tweetnacl

sh

M(o,a,b)

sh [{ v_o }]←(lg16)− o;

sh [{ v_a }]←(lg16)− a;

sh [{ v_b }]←(lg16)− b

sh

M(o,a,a)

sh [{ v_o }]←(lg16)− o;

sh [{ v_a }]←(lg16)− a

In separation logic:

sh

Ews

M(a,c,_121665)

sh [{ v_a }]←(lg16)− a;

sh [{ v_c }]←(lg16)− c;

Ews[{ c121665}]←(lg16)− _121665

In separation logic:

Figure 7.4: Aliasing and separation logic.

In the proof of our specification, we do a case analysis over k when
needed. This solution does not cover all the possible cases of aliasing
over 3 pointers (e. g., o = a = b) but it is enough to satisfy our needs.

partial or total correctness . An astute reader would argue
that our proof is not ªtotally correctº, not in the sense that our proof
is wrong, but referring to the notion of total correctness. The differ-
ence between partial and total correctness comes down to the proof of
termination, in other words that there is no infinite loop in the code.

In their paper, the authors of VST note that:
ªOur tools implement a Hoare logic of partial correctness, meaning
that C may loop infinitely.º [Cao+18].

Consequently, our proof of Theorem body_crypto_scalarmult does
not cover the total correctness. This could be solved by (1) extending
the while rule to enforce a decreasing argument or (2) by incorpo-
rating it in the pre/post conditions, and loop invariant.

On a simpler level, a weaker argument for the total correctness of
our proof is that there are no while loops used, and the for loops in
crypto_scalarmult and all subsequent functions are with decreasing
arguments, finishing in a finite number of steps.

7.4 proving equivalence of x25519 in c and coq 197

7.4.2 Number representation and C implementation

As described in Section 7.2.3, numbers in gf (array of 16 long long)
are represented in base 216 and we use a direct mapping to represent
that array as a list integers in Coq. However, in order to show the
correctness of the basic operations, we need to convert this number to
an integer. We reuse the mapping ZofList : Z → list Z → Z from
Section 7.3 and define a notation where n is 16, to fix a radix of 216.

Notation "Z16.lst A" := (ZofList 16 A).

To facilitate working in Z2255−19, we define the :GF notation.

Notation "A :GF" := (A mod (2255 − 19)).

Later in Section 7.5.2, we formally define F2255−19 as a field. Equiva-
lence between operations in Z2255−19 (i. e., under :GF) and in F2255−19
are easily proven.

We define Low.M to replicate the computations and steps done the
multiplication over gf in C; similarly we also define Low.A, Low.Sq,
Low.Zub etc. respectively to cover the other operations. Then using the
two definition above-mentioned, we prove intermediate lemmas such
as Lemma 7.4.1 for the correctness of the multiplication.

lemma 7 .4 .1. Low.M correctly implements the multiplication over
Z2255−19.

Lemma 7.4.1 is proven in Coq as follows:

Lemma mult_GF_Zlength :
forall (a:list Z) (b:list Z),
Zlength a = 16 →
Zlength b = 16 →
(Z16.lst (Low.M a b)) :GF =
(Z16.lst a * Z16.lst b) :GF.

However, for our purpose simple functional correctness is not
enough. We also need to define the bounds under which the op-
erations are correct, allowing us to chain them, and guaranteeing us
the absence of overflow.

lemma 7 .4 .2. if all the values of the input arrays are constrained between
−226 and 226, then the output array of Low.M will have its values constrained
between −38 and 216 + 38.

Lemma 7.4.2 is proven in Coq as follows:

Lemma M_bound_Zlength :
forall (a:list Z) (b:list Z),
Zlength a = 16 →
Zlength b = 16 →
Forall (fun x ⇒ -226 < x < 226) a →
Forall (fun x ⇒ -226 < x < 226) b →
Forall (fun x ⇒ -38 ≤ x < 216 + 38) (Low.M a b).

198 a coq proof of the correctness of x25519 in tweetnacl

By using each function Low.M; Low.A; Low.Sq; Low.Zub; Unpack25519;
clamp; Pack25519; Inv25519; car25519; montgomery_rec, we defined
Crypto_Scalarmult in Coq and with VST proved that it matches the
exact behavior of X25519 in TweetNaCl.

By proving that each function Low.M; Low.A; Low.Sq; Low.Zub;
Unpack25519; clamp; Pack25519; Inv25519; car25519 behave over
list Z as their equivalent over Z with :GF (in Z2255−19), we prove
that given the same inputs Crypto_Scalarmult performs the same
computation as RFC.

Lemma Crypto_Scalarmult_RFC_eq :
forall (n: list Z) (p: list Z),
Zlength n = 32 →
Zlength p = 32 →
Forall (fun x ⇒ 0 ≤ x ∧ x < 2 ^ 8) n →
Forall (fun x ⇒ 0 ≤ x ∧ x < 2 ^ 8) p →
Crypto_Scalarmult n p = RFC n p.

Using this equality, we can directly replace Crypto_Scalarmult in
our specification by RFC, proving that TweetNaCl’s X25519 implemen-
tation respects RFC 7748.

7.4.3 Towards faster proofs

The idea of speed in verification is quite ambiguous as it may refer to:
(1) the performances of proof automation on large terms (generating),
(2) similarly the performances of verifying the proofs on large terms
(checking), (3) strategies to formalize and prove the correctness of
some functions. The idea that a proof is executed only once is an easy
misconception that one can have about formal verification: ªWe have
proven the correctness of foo, so we do not need to do it again.º This is easily
disproved by considering that any modification of the dependencies
requires the checking of all the subsequent proofs. As a result, this
recompilation may take from minutes to an hour and hinder the efforts
of a researcher (see Figure 7.5).

Figure 7.5: Compiling. Ð https://xkcd.com/303/

https://xkcd.com/303/

7.4 proving equivalence of x25519 in c and coq 199

Appel summarized the answer to this questions on the Coq-club
mailing list: ªQuestion: how to improve Coq’s performance on proof au-
tomation for large terms. Short answer: reflection. Long answer: reflection,
reflection, reflection. And perhaps uconstr.º [App21]

This reflection technique mentioned by Appel is most notably known
for being the base of the Ssreflect library [GMT16] and is discussed at
length in chapter 15 of [Chl10].

In the rest of this section we provide two examples where we applied
reflection to illustrate briefly how this technique works and some of
its use cases.

inverse in Z2255−19 . In TweetNaCl, inv25519 computes an in-
verse in Z2255−19. It uses Fermat’s little theorem by raising to the
power of p − 2 = 2255 − 21 with a square-and-multiply algorithm.
The binary representation of 2255 − 21 implies that every step does a
multiplication except for bits 2 and 4 (see Code 7.1).

1 sv inv25519(gf o,const gf i)
2 {
3 gf c;
4 int a;
5 set25519(c,i);
6 for(a=253;a>=0;a--) {
7 S(c,c);
8 if(a!=2&&a!=4) M(c,c,i);
9 }

10 FOR(a,16) o[a]=c[a];
11 }

Code 7.1: Inverse modulo 2255 − 19 in TweetNaCl

To prove the correctness of the result we could use multiple strate-
gies such as:

• Proving it is a special case of the square-and-multiply algorithm
applied to 2255 − 21.

• Unrolling the for loop step-by-step and applying the equalities
xa × xb = x(a+b) and (xa)2 = x(2×a), and subsequently proving
that the resulting exponent is 2255 − 21.

We use the second method because it is simpler. However, it requires
us to apply the unrolling and exponentiation formulas 255 times.
This could be automated in Coq with tacticals such as repeat, but it
generates a large proof object which will take a long time to verify, i. e.,
type-check the proof term.

That is where in order to speed up the process we use the reflection
technique. It provides us with flexibility, e. g., we don’t need to know
the number of times nor the order in which the lemmas need to be
applied.

The idea is to reflect the goal into a decidable environment. We show
that for a proposition P, we can define a decidable Boolean property
p such that [[p]] ≡env P, in other words that p is denotes P in the

200 a coq proof of the correctness of x25519 in tweetnacl

environment env. Additionally, by applying a decision procedure on p
we infer that P holds.

sound_P : ∀ env, decide p = true→ [[p]]env

By applying sound_P on P our goal becomes decide p = true. After
simple computation, if everything goes well we are left with the
tautology true = true.

The reflection used in the proof of inv25519 is described in further
details in Section 7.D.

packing in Z2255−19 . This reflection technique is also used where
proofs require some computing over a small and finite domain of
variables to test e. g., for all i such that 0 ≤ i < 16. Using reflection we
prove that we can split the for loop in pack25519 (Code 7.2) into two
separate loops.

1 for(i=1;i<15;i++) {
2 m[i]=t[i]-0xffff-((m[i-1]>>16)&1);
3 m[i-1]&=0xffff;
4 }

Code 7.2: Subtract-and-carry.

The first loop computes the subtraction, and the second applies the
carries. Effectively making the code equivalent to Code 7.3.

1 for(i=1;i<15;i++) {
2 m[i]=t[i]-0xffff
3 }
4
5 for(i=1;i<15;i++) {
6 m[i]=m[i]-((m[i-1]>>16)&1);
7 m[i-1]&=0xffff;
8 }

Code 7.3: Subtract then carry.

This is done by creating a domain-specific language which captures
the possible operations applied in Code 7.2 and 7.3:

Inductive red_expr :=
| R_red : term → red_expr
| Sub_red : red_expr → red_expr
| SubC_red : red_expr → red_expr → red_expr
| Mod_red : red_expr → red_expr
| Nth_red : nat → list red_expr → red_expr → red_expr.

Therefore, the result of the for loop is seen as a list of red_expr where:
• R_red denotes base expressions,
• Sub_red denotes x-0xffff,
• SubC_red denotes x-((y>>16)&1),
• Mod_red denotes x&0xffff,
• Nth_red denotes m[i-1].

Consequently, for loops in Code 7.2 and Code 7.3 are turned into
Coq functions which apply the respective transformations on an in-
put list of red_expr. The equality between the resulting list translate

7.5 proving that x25519 matches the mathematical model 201

directly into the equality of the loop as the chain of operations is the
same.

This for-loop separation allows for simpler proofs: the first loop is
seen as the subtraction of 2255 − 19 and the resulting number repre-
sented in Z2255−19 is invariant with the iteration of the second loop.
Down the line, this helps us prove that pack25519 reduces modulo
2255 − 19 and returns a number in base 28.

Lemma Pack25519_mod_25519 :
forall (l:list Z),
Zlength l = 16 →
Forall (λ x ⇒ -262 < x < 262) l →
ZofList 8 (Pack25519 l) = (Z16.lst l) mod (2255 − 19).

7.5 proving that x25519 matches the mathematical model

In this section we prove the following informal theorem:

The implementation of X25519 in TweetNaCl computes the Fp-restricted
x-coordinate scalar multiplication on E(Fp2) where p is 2255 − 19 and E is

the elliptic curve y2 = x3 + 486662x2 + x.

More precisely, we prove that our formalization of the RFC matches
the definitions of Curve25519 by Bernstein:

Theorem RFC_Correct: forall (n p : list Z)
(P:mc curve25519_Fp2_mcuType),
Zlength n = 32 →
Zlength p = 32 →
Forall (fun x ⇒ 0 ≤ x ∧ x < 2 ^ 8) n →
Forall (fun x ⇒ 0 ≤ x ∧ x < 2 ^ 8) p →
Fp2_x (decodeUCoordinate p) = P#x0 →
RFC n p =
encodeUCoordinate

((P *+ (Z.to_nat (decodeScalar25519 n))) _x0).

In Section 7.5.1, we first review the work of Bartzia and Strub [BS14],
then we extend it to support Montgomery curves with homogeneous
coordinates, and we prove the correctness of the ladder. In Section 7.5.2,
we discuss the twist of Curve25519, and we explain how we deal with
it in the proofs.

7.5.1 Formalization of elliptic Curves

Figure 7.6 presents the structure of the proof of the ladder’s correctness.
The white tiles are definitions, the orange one is a hypothesis and the
green tiles represent major lemmas and theorems.

We consider the field K and formalize the Montgomery curves
(Ma,b(K)). Then, by using the equivalent Weierstraß form (Ea′ ,b′ (K))
from the library of Bartzia and Strub, we prove that Ma,b(K) forms an
abelian group. Under the hypotheses that a2 − 4 is not a square in K,
we prove the correctness of the ladder (Theorem 7.5.9).

202 a coq proof of the correctness of x25519 in tweetnacl

Library from Bartzia & Strub

Ma,b(K)

Ea′ ,b′ (K)

Ma,b(K) is an Assoc. Fin. Grp.

Hyp:

∀x ∈ K,
x2 ̸= a2 − 4

Thm:

∀x ∈ K, n ∈ N, P ∈ Ma,b(K),
x = χ0(P)→

ladder n x = χ0(n · P)

Figure 7.6: Overview of the proof of Montgomery ladder’s correctness.

We now turn our attention to the details of the proof of the ladder’s
correctness.

definition 7 .5 .1. Given a field K, using an appropriate choice of
coordinates, an elliptic curve E is a plane cubic algebraic curve defined
by an equation E(x, y) of the form:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

where the ai’s are in K and the curve has no singular point (i. e., no cusps or
self-intersections). The set of points defined over K, written E(K), is formed
by the solutions (x, y) of E together with a distinguished point O called point
at infinity:

E(K) = {(x, y) ∈ K×K | E(x, y)} ∪ {O}

short weierstraß curves .

For the remainder of this chapter, we assume that the characteristic
of K is neither 2 nor 3. Then, this equation E(x, y) can be reduced into
its short Weierstraß form.

definition 7 .5 .2. Let a ∈ K and b ∈ K such that

∆(a, b) = −16(4a3 + 27b2) ̸= 0.

The elliptic curve Ea,b is defined by the equation:

y2 = x3 + ax + b.

Ea,b(K) is the set of all points (x, y) ∈ K
2 satisfying the Ea,b along with

an additional formal point O, ªat infinityº. Such a curve does not have any
singularity.

7.5 proving that x25519 matches the mathematical model 203

In this setting, Bartzia and Strub defined the parametric type ec

which represent the points on a specific curve. It is parameterized by
a K : ecuFieldType Ð the type of fields which characteristic is not 2

or 3 Ð and E : ecuType Ð a record that packs the curve parameters
a and b along with the proof that ∆(a, b) ̸= 0.

Inductive point := EC_Inf | EC_In of K * K.
Notation "(| x, y |)" := (EC_In x y).
Notation "∞" := (EC_Inf).

Record ecuType :=

{ A : K; B : K; _ : 4 * A3 + 27 * B2 ̸= 0}.
Definition oncurve (p : point) :=
if p is (| x, y |)

then y2 == x3 + A * x + B
else true.

Inductive ec : Type := EC p of oncurve p.

Points on an elliptic curve are equipped with the structure of an
abelian group.

• The negation of a point P = (x, y) is defined by reflection over
the x axis −P = (x,−y).

• The addition of two points P and Q is defined as the negation of
the third intersection point of the line passing through P and Q,
or tangent to P if P = Q.

• O is the neutral element under this law: if 3 points are collinear,
their sum is equal to O.

These operations are defined in Coq as follows (where we omit the
code for the tangent case):

Definition neg (p : point K) :=
if p is (| x, y |) then (| x, -y |) else EC_Inf.

Definition add (p1 p2 : point) :=
match p1, p2 with
| ∞ , _ ⇒ p2
| _ , ∞ ⇒ p1
| (| x1, y1 |), (| x2, y2 |) ⇒

if x1 == x2 then ... else
let s := (y2 - y1) / (x2 - x1) in

let xs := s2 - x1 - x2 in
(| xs, - s * (xs - x1) - y1 |)

end.

The value of add is proven to be on the curve (with coercion):

Lemma addO (p q : ec): oncurve (add p q).

Definition addec (p1 p2 : ec) : ec :=
EC (add p1 p2) (addO p1 p2)

204 a coq proof of the correctness of x25519 in tweetnacl

montgomery curves .

Speedups can be obtained by switching to homogeneous coordi-
nates and other forms than the Weierstraß form. We consider the
Montgomery form [Mon87].

definition 7 .5 .3. Let a ∈ K\{−2, 2}, and b ∈ K\{0}. The elliptic
curve Ma,b is defined by the equation:

by2 = x3 + ax2 + x,

Ma,b(K) is the set of all points (x, y) ∈ K
2 satisfying the Ma,b along with

an additional formal point O, ªat infinityº.

Similar to the definition of ec, we defined the parametric type mc

which represents the points on a specific Montgomery curve. It is
parameterized by a K : ecuFieldType Ð the type of fields whose
characteristic is neither 2 nor 3Ð and M : mcuType Ð a record that
packs the curve parameters a and b along with the proofs that b ̸= 0
and a2 ̸= 4.

Record mcuType :=

{ cA : K; cB : K; _ : cB ̸= 0; _ : cA2 ̸= 4}.
Definition oncurve (p : point) :=
if p is (| x, y |)

then cB * y2 == x3 + cA * x2 + x
else true.

Inductive mc : Type := MC p of oncurve p.

Lemma oncurve_mc: forall p : mc, oncurve p.

We define the addition on Montgomery curves in a similar way as for
the Weierstraß form.

Definition add (p1 p2 : point) :=
match p1, p2 with

| ∞, _ ⇒ p2
| _, ∞ ⇒ p1
| (|x1, y1|), (|x2, y2|) ⇒
if x1 == x2
then if (y1 == y2) && (y1 ̸= 0)

then ... else ∞
else
let s := (y2 - y1) / (x2 - x1) in

let xs := s2
* cB - cA - x1 - x2 in

(| xs, - s * (xs - x1) - y1 |)
end.

And again we prove the result is on the curve:

Lemma addO (p q : mc) : oncurve (add p q).

Definition addmc (p1 p2 : mc) : mc :=
MC (add p1 p2) (addO p1 p2)

We define a bijection between a Montgomery curve and its short
Weierstraß form (Lemma 7.5.4) and prove that it respects the addition

7.5 proving that x25519 matches the mathematical model 205

as defined on the respective curves. In this way we get all the group
laws for Montgomery curves from the Weierstraß ones.

After having verified the group properties, it follows that the bijec-
tion is a group isomorphism.

lemma 7 .5 .4. Let Ma,b be a Montgomery curve, define

a′ =
3− a2

3b2 and b′ =
2a3 − 9a

27b3 ,

then Ea′ ,b′ is a Weierstraß curve, and the mapping φ : Ma,b 7→ Ea′ ,b′ defined
as:

φ(OM) = OE

φ((x, y)) =
(x

b
+

a
3b

,
y
b

)

is a group isomorphism between elliptic curves.

Definition ec_of_mc_point p :=
match p with
| ∞ ⇒ ∞
| (|x, y|) ⇒ (|x/b + a/(3 * b), y/b|)
end.

Lemma ec_of_mc_point_ok p :
oncurve M p →
ec.oncurve E (ec_of_mc_point p).

Definition ec_of_mc p :=
EC (ec_of_mc_point_ok (oncurve_mc p)).

Lemma ec_of_mc_bij : bijective ec_of_mc.

projective coordinates .

In a projective plane, points are represented with triples (X : Y : Z),
with the exception of (0 : 0 : 0). Scalar multiples are representing the
same point, i. e., for all λ ̸= 0, the triples (X : Y : Z) and (λX : λY : λZ)
represent the same point. For Z ̸= 0, the projective point (X : Y : Z)
corresponds to the point (X/Z, Y/Z) on the affine plane. Likewise,
the point (X, Y) on the affine plane corresponds to (X : Y : 1) on the
projective plane.

Using fractions as coordinates, the equation for a Montgomery curve
Ma,b becomes:

b
(

Y
Z

)2

=

(
X
Z

)3

+ a
(

X
Z

)2

+

(
X
Z

)

Multiplying both sides by Z3 yields:

bY2Z = X3 + aX2Z + XZ2

Setting Z = 0 in this equation, we derive X = 0. Hence, (0 : 1 : 0) is
the unique point on the curve at infinity.

206 a coq proof of the correctness of x25519 in tweetnacl

By restricting the parameter a of Ma,b(K) such that a2 − 4 is not a
square in K (Hypothesis 7.5.5), we ensure that (0, 0) is the only point
with a y-coordinate of 0.

hypothesis 7 .5 .5. a2 − 4 is not a square in K.

Hypothesis mcu_no_square : forall x : K, x2 ̸= a2 - 4.

We define χ and χ0 to return the x-coordinate of points on a curve.

definition 7 .5 .6. Let χ : Ma,b(K) 7→ K∪ {∞} and χ0 : Ma,b(K) 7→
K such that

χ((x, y)) = x, χ(O) = ∞, and

χ0((x, y)) = x, χ0(O) = 0.

Using projective coordinates we prove the formula for differential
addition.

lemma 7 .5 .7. Let Ma,b be a Montgomery curve such that a2 − 4 is not
a square in K, and let X1, Z1, X2, Z2, X4, Z4 ∈ K, such that (X1, Z1) ̸=
(0, 0), (X2, Z2) ̸= (0, 0), X4 ̸= 0 and Z4 ̸= 0. Define

X3 = Z4((X1 − Z1)(X2 + Z2) + (X1 + Z1)(X2 − Z2))
2

Z3 = X4((X1 − Z1)(X2 + Z2)− (X1 + Z1)(X2 − Z2))
2,

then for any point P1 and P2 in Ma,b(K) such that X1/Z1 = χ(P1),
X2/Z2 = χ(P2), and X4/Z4 = χ(P1 − P2), we have X3/Z3 = χ(P1 +
P2).
Remark: These definitions should be understood in K ∪ {∞}. If x ̸= 0 then
we define x/0 = ∞.

Similarly we also prove the formula for point doubling.

lemma 7 .5 .8. Let Ma,b be a Montgomery curve such that a2 − 4 is not a
square in K, and let X1, Z1 ∈ K, such that (X1, Z1) ̸= (0, 0). Define

c = (X1 + Z1)
2 − (X1 − Z1)

2

X3 = (X1 + Z1)
2(X1 − Z1)

2

Z3 = c
(

(X1 + Z1)
2 +

a− 2
4
× c

)

,

then for any point P1 in Ma,b(K) such that X1/Z1 = χ(P1), we have
X3/Z3 = χ(2P1).

With Lemma 7.5.7 and Lemma 7.5.8, we are able to compute ef-
ficiently differential addition and point doubling using projective
coordinates.

7.5 proving that x25519 matches the mathematical model 207

scalar multiplication algorithms .

By taking Algorithm 7 and replacing xDBL&ADD by a combination of
the formulas from Lemma 7.5.7 and Lemma 7.5.8„ we define a ladder
opt_montgomery (in which K has not been fixed yet). This gives us the
theorem of the correctness of the Montgomery ladder.

theorem 7 .5 .9. For all n, m ∈ N, x ∈ K, P ∈ Ma,b(K), if χ0(P) = x
then opt_montgomery returns χ0(n · P)

Theorem opt_montgomery_ok (n m: nat) (x : K) :
n < 2m →
forall (p : mc M), p#x0 = x →
opt_montgomery n m x = (p *+ n)#x0.

The definition of opt_montgomery is similar to montgomery_rec_swap

that was used in RFC. We proved their equivalence, and used it in our
final proof of Theorem RFC_Correct.

7.5.2 Curves, twists and extension fields

Figure 7.7 gives a high-level view of the proofs presented here. The
white tiles are definitions while green tiles are important lemmas and
theorems.

p = 2255 − 19
C = M486662,1
T = M486662,2

p is prime

Fp

∀x ∈ Fp ,
x2 ̸= 2

∀x ∈ Fp ,
x2 ̸= a2 − 4

C(Fp) T(Fp)

∀x ∈ Fp ,
∃P ∈ C(Fp),
∃Q ∈ T(Fp),

x = χ0(P) ∨ x = χ0(Q)

∀x ∈ Fp ,
∀P ∈ C(Fp),
x = χ0(P)→

lad. n x = χ0(n · P)

∀x ∈ Fp ,
∀Q ∈ T(Fp),
x = χ0(Q)→

lad. n x = χ0(n ·Q)

Fp2

C(Fp2) C(Fp) ⊂ C(Fp2)

T(Fp) ⊂ C(Fp2)

Thm:

∀x ∈ Fp ,
∀P ∈ C(Fp2),
x = χ0(P)→

ladder n x = χ0(n · P)

Figure 7.7: Proof dependencies for the correctness of X25519.

208 a coq proof of the correctness of x25519 in tweetnacl

A brief overview of the complete proof is described below. We first
set a = 486662, b = 1, b′ = 2, p = 2255 − 19, with the equations
C = Ma,b, and T = Ma,b′ . We prove the primality of p and define
the field Fp. Subsequently, we show that neither 2 nor a2 − 2 is a
square in Fp. We consider Fp2 and define C(Fp), T(Fp), and C(Fp2).
We prove that for all x ∈ Fp there exists a point with x-coordinate
x either on C(Fp) or on the quadratic twist T(Fp). We prove that all
points in M(Fp) and T(Fp) can be projected in M(Fp2) and derive
that computations done in M(Fp) and T(Fp) yield the same results if
projected to M(Fp2). Using Theorem 7.5.9 we prove that the ladder is
correct for M(Fp) and T(Fp); with the previous results, this results in
the correctness of the ladder for M(Fp2), in other words the correctness
of X25519.

Now that we have an aperçu of the proof, we turn our attention to
the details. Indeed, Theorem 7.5.9 cannot be applied directly to prove
that X25519 is doing the computations over M(Fp2). This would infer
that K = Fp2 , and we would need to satisfy Hypothesis 7.5.5:

∀x ∈ K, x2 ̸= a2 − 4,

which is not possible as there always exists x ∈ Fp2 such that x2 = a2−
4. Consequently, we first study Curve25519 and one of its quadratic
twists Twist25519, both defined over Fp.

curves and twists .

We define Fp as the numbers between 0 and p = 2255 − 19. We
create a Zmodp module to encapsulate those definitions.

Module Zmodp.
Definition betweenb x y z := (x ≤ ? z) && (z <? y).

Definition p := locked (2255 - 19).
Fact Hp_gt0 : p > 0.
Inductive type := Zmodp x of betweenb 0 p x.

Lemma Z_mod_betweenb (x y : Z) :
y > 0 → betweenb 0 y (x mod y).

Definition pi (x : Z) : type :=
Zmodp (Z_mod_betweenb x Hp_gt0).

Coercion repr (x : type) : Z :=
let: @Zmodp x _ := x in x.

We define the basic operations (+,−,×) with their respective neutral
elements (0, 1) and prove Lemma 7.5.10.

lemma 7 .5 .10. Fp is a field.

For a = 486662, by using the Legendre symbol we prove that a2 − 4
and 2 are not squares in Fp.

Fact a_not_square : forall x: Zmodp.type,

x2 ̸= (Zmodp.pi 486662)2 - 4.

7.5 proving that x25519 matches the mathematical model 209

Fact two_not_square : forall x: Zmodp.type,

x2 ̸= 2.

This allows us to study M486662,1(Fp) and M486662,2(Fp), one of its
quadratic twists.

definition 7 .5 .11. We instantiate opt_montgomery in two specific
ways:

± Curve25519_Fp(n, x) for M486662,1(Fp).
± Twist25519_Fp(n, x) for M486662,2(Fp).

With Theorem 7.5.9 we derive the following two lemmas:

lemma 7 .5 .12. Let x ∈ Fp, n ∈ N, P ∈ Fp × Fp such that P ∈
M486662,1(Fp) and χ0(P) = x, then

Curve25519_Fp(n, x) = χ0(n · P).

lemma 7 .5 .13. Let x ∈ Fp, n ∈ N, P ∈ Fp × Fp such that P ∈
M486662,2(Fp) and χ0(P) = x, then

Twist25519_Fp(n, x) = χ0(n · P).

As the Montgomery ladder does not depend on b, it is trivial to
see that the computations done for points in M486662,1(Fp) and in
M486662,2(Fp) are the same.

Theorem curve_twist_eq: forall n x,
curve25519_Fp_ladder n x = twist25519_Fp_ladder n x.

Because 2 is not a square in Fp, it allows us split Fp into two sets.

lemma 7 .5 .14. For all x in Fp, there exists y in Fp such that

y2 = x ∨ 2y2 = x

For all x ∈ Fp, we can compute x3 + ax2 + x. Using Lemma 7.5.14 we
can find a y such that (x, y) is either on the curve or on the quadratic
twist:

lemma 7 .5 .15. For all x ∈ Fp, there exists a point P in M486662,1(Fp)
or in M486662,2(Fp) such that the x-coordinate of P is x.

Theorem x_is_on_curve_or_twist:
forall x : Zmodp.type,
(exists (p : mc curve25519_mcuType), p#x0 = x) ∨
(exists (p' : mc twist25519_mcuType), p'#x0 = x).

210 a coq proof of the correctness of x25519 in tweetnacl

curve25519 over F p2 .

The quadratic extension Fp2 is defined as Fp[
√

2] by [Ber06b]. The
theory of finite fields already has been formalized in the Mathematical
Components library [MT21], but this formalization is rather abstract,
and we need concrete representations of field elements here. For this
reason we decided to formalize a definition of Fp2 ourselves.

We can represent Fp2 as the set Fp×Fp, in other words, representing
polynomials with coefficients in Fp modulo X2 − 2. In a similar way
as for Fp we use a module in Coq.

Module Zmodp2.
Inductive type := Zmodp2 (x: Zmodp.type) (y:Zmodp.type).

Definition pi (x: Zmodp.type * Zmodp.type) : type :=
Zmodp2 x.1 x.2.

Coercion repr (x: type) : Zmodp.type*Zmodp.type :=
let: Zmodp2 u v := x in (u, v).

Definition zero : type :=
pi (0, 0).

Definition one : type :=
pi (1, 0).

We define the basic operations (+,−,×) with their respective neutral
elements 0 and 1. Additionally, we verify that for each element of in
Fp2\{0}, there exists a multiplicative inverse.

lemma 7 .5 .16. For all x ∈ Fp2\{0} and a, b ∈ Fp such that x = (a, b),

x−1 =
(a

a2 − 2b2 ,
−b

a2 − 2b2

)

As in Fp, we define 0−1 = 0 and prove Lemma 7.5.17.

lemma 7 .5 .17. Fp2 is a commutative field.

We then specialize the basic operations in order to speed up the
verification of formulas by using rewrite rules:

(a, 0) + (b, 0) = (a + b, 0)

(a, 0)−1 = (a−1, 0)

(a, 0) · (b, 0) = (a · b, 0)

(0, a)−1 = (0, (2 · a)−1)

The injection a 7→ (a, 0) from Fp to Fp2 preserves 0, 1,+,−,×. Thus
(a, 0) can be abbreviated as a without confusions.

We define M486662,1(Fp2) and the mappings φc, φt, and ψ as in
Definition 7.5.18. With the rewrite rule above, it is straightforward
to prove that any point on the curve M486662,1(Fp) is also on the
curve M486662,1(Fp2). Similarly, any point on the quadratic twist
M486662,2(Fp) also corresponds to a point on the curve M486662,1(Fp2).

7.5 proving that x25519 matches the mathematical model 211

definition 7 .5 .18. Define the functions φc, φt and ψ

± φc : M486662,1(Fp) 7→ M486662,1(Fp2)
such that φ((x, y)) = ((x, 0), (y, 0)).

± φt : M486662,2(Fp) 7→ M486662,1(Fp2)
such that φ((x, y)) = ((x, 0), (0, y)).

± ψ : Fp2 7→ Fp such that ψ(x, y) = x.

As direct consequence, using Lemma 7.5.15, we prove that for all
x ∈ Fp, there exists a point P ∈ Fp2 × Fp2 on M486662,1(Fp2) such that
χ0(P) = (x, 0) = x.

Lemma x_is_on_curve_or_twist_implies_x_in_Fp2:
forall (x:Zmodp.type),
exists (p: mc curve25519_Fp2_mcuType),

p#x0 = Zmodp2.Zmodp2 x 0.

We now study the case of the scalar multiplication and show similar
proofs.

lemma 7 .5 .19. For all n ∈ N, for all point P ∈ Fp × Fp on the curve
M486662,1(Fp) (respectively on the quadratic twist M486662,2(Fp)), we have:

P ∈ M486662,1(Fp)→ φc(n · P) = n · φc(P)

P ∈ M486662,2(Fp)→ φt(n · P) = n · φt(P)

Notice that:

∀P ∈ M486662,1(Fp), ψ(χ0(φc(P))) = χ0(P)

∀P ∈ M486662,2(Fp), ψ(χ0(φt(P))) = χ0(P)

In summary for all n ∈ N, n < 2255, for any given point P ∈ Fp ×
Fp in M486662,1(Fp) or M486662,2(Fp), Curve25519_Fp computes the
χ0(n · P). We proved that for all P ∈ Fp2 × Fp2 such that χ0(P) ∈ Fp
there exists a corresponding point on the curve or the twist over Fp.
Moreover, we have proved that for any point on the curve or the twist,
we can compute the scalar multiplication by n and obtain the same
result as if we did the computation in Fp2 .

theorem 7 .5 .20. For all n ∈ N, such that n < 2255, for all x ∈ Fp and
P ∈ M486662,1(Fp2) such that χ0(P) = x, Curve25519_Fp(n, x) computes
χ0(n · P).

which is formalized in Coq as:

Theorem curve25519_Fp2_ladder_ok:
forall (n : nat) (x:Zmodp.type),

(n < 2255)%nat →
forall (p : mc curve25519_Fp2_mcuType),
p #x0 = Zmodp2.Zmodp2 x 0 →
curve25519_Fp_ladder n x = (p *+ n)#x0 /p.

212 a coq proof of the correctness of x25519 in tweetnacl

We then prove the equivalence between of operations in F2255−19
and Z2255−19, in other words between Zmodp and :GF. This allows us
to show that given a clamped value n and normalized x-coordinate of
P, RFC gives the same results as Curve25519_Fp.

All put together, this finishes the proof of the mathematical correct-
ness of X25519: the fact that the code in X25519, both in the RFC 7748

and in the TweetNaCl implementation, correctly computes scalar mul-
tiplication in the elliptic curve.

7.6 conclusion

Any formal system relies on a trusted base. In this section we describe
our chain of trust.

trusted code base of the proof . Our proof relies on a trusted
base, i. e., a foundation of definitions that must be correct. One should
not be able to prove a false statement in that system, i. e., it should be
consistent.

In our case we rely on:
• Calculus of Inductive Constructions. The intuitionistic logic

used by Coq must be consistent in order to trust the proofs. As
an axiom, we assume that the functional extensionality is also
consistent with that logic.

∀x, f (x) = g(x)→ f = g

Lemma f_ext: forall (A B:Type),
forall (f g: A → B),
(forall x, f(x) = g(x)) → f = g.

• Verifiable Software Toolchain. This framework developed at
Princeton allows a user to prove that a Clight code matches pure
Coq specification.

• CompCert. When compiling with CompCert we only need to
trust CompCert’s assembly semantics, as the compilation chain
has been formally proven correct. However, when compiling
with other C compilers like Clang or GCC, we need to trust that
the CompCert’s Clight semantics matches the C17 standard.

• clightgen. The tool translating from C to Clight, the first step of
the CompCert compilation. This compilation step is not covered
by the proofs of CompCert and VST requires Clight input. VST

does not support the direct verification of o[i] = a[i] + b[i].
This needs to be rewritten into:

aux1 = a[i]; aux2 = b[i];
o[i] = aux1 + aux2;

The -normalize flag is taking care of this rewriting and factors
out assignments from inside subexpressions.

7.6 conclusion 213

• Finally, we must trust the Coq kernel and its associated libraries;
the Ocaml compiler on which we compiled Coq; the Ocaml

Runtime and the CPU. Those are common to all proofs done
with this architecture [App15; Coq].

corrections in tweetnacl . As a result of this verification, we
removed superfluous code. Indeed, indexes 17 to 79 of the i64 x[80]

intermediate variable of crypto_scalarmult were adding unnecessary
complexity to the code, we removed them.

Peter Wu and Jason A. Donenfeld brought to our attention that the
original car25519 function carried a risk of undefined behavior if c is
a negative number.

c=o[i]>>16;
o[i]-=c<<16; // c < 0 = UB !

We replaced this statement with a logical and, proved correctness, and
thus solved this problem.

o[i]&=0xffff;

Aside from these modifications, all subsequent alterations to the
TweetNaCl codeÐsuch as the type change of loop indexes (int instead
of i64)Ðwere required for VST to step through the code properly. We
believe that those adjustments do not impact the trust of our proof.

We contacted the authors of TweetNaCl and expect that the changes
described above will soon be integrated in a new version of the library.

lessons learned. Most efforts in the area of high-assurance
crypto are carried out by teams who at the same time work on tools
and proofs and often even co-develop the implementations with the
proofs. In this effort we set out to verify pre-existing software, written
in a not particularly verification-friendly language using a set of tools
(VST and Coq) whose development we are not actively involved in.

TweetNaCl comes with a claim of verifiability, but it became clear
rather quickly that this claim is only based on the overall simplicity of
the library and not supported by code written carefully such that it
can efficiently be verified with existing tools. In Section 7.A we provide
the verified version of TweetNaCl and the difference with the original
TweetNaCl, and thus gives an idea of some minimal changes we had
to apply to work with VST; many more small changes would have
made the proof much easier and more elegant. As one example, in
pack25519 the subtraction of p and the carry propagation are done in
a single for loop; had they been split into two loops, the final result
would have been the same but with a much smaller verification effort.

There were many positive lessons to be learned from this verification
effort; most importantly that it is possible to prove ªlegacyº crypto-
graphic software written in C correct without having to co-develop
proofs and tools. However, we also learned that it is still necessary to
understand to some extent how these tools (in particular VST) work

214 a coq proof of the correctness of x25519 in tweetnacl

under the hood. VST is a collection of lemmas and proof tactics; the
idea is to expose the user only to the tactics and hide the details of the
underlying lemmas. At least in the VST versions we worked with, this
approach did not quite work and at various stages in the proofs we
had to look into the underlying lemmas. This was due to the provided
tactics not terminating, for example in the last few steps of pack25519’s
VST proof. Some struggle with VST also taught us another pleasant
lesson, namely that the VST development team is very responsive and
helpful. Various of our issues were sorted out with their help, and we
hope that some of the experience we brought in also helped improve
VST.

extending our work . The high-level definition (Section 7.5) can
easily be ported to any other Montgomery curve and with it the proof
of the ladder’s correctness assuming the same formulas are used. In
addition to the curve equation, the field Fp would need to be redefined
as p = 2255 − 19 is hard-coded in order to speed up some proofs.

With respect to the C code verification (Section 7.4), the extension of
the verification effort to Ed25519 would make directly use of the low-
level arithmetic. As the ladder-steps formula is different, this would
require a high level verification similar to Theorem 7.5.9; also, a full
correctness verification of Ed25519 signatures would require verifying
correctness of SHA-512.

The verification of e. g., X448 [Ham15; LHT] in C would require
the adaptation of most of the low-level arithmetic (mainly the mul-
tiplication, carry propagation and reduction). Once the correctness
and bounds of the basic operations are established, reproving the full
ladder would make use of our generic definition.

a complete proof . We provide a mechanized formal proof of
the correctness of the X25519 implementation in TweetNaCl from C
up the mathematical definitions with a single tool. We first formalized
X25519 from RFC 7748 [LHT] in Coq. We then proved that TweetNaCl’s
implementation of X25519 matches our formalization. In a second step
we extended the Coq library for elliptic curves [BS14] by Bartzia and
Strub to support Montgomery curves. Using this extension we proved
that the X25519 specification from the RFC matches the mathematical
definitions as given in [Ber06b, Sec. 2]. Therefore, in addition to prov-
ing the mathematical correctness of TweetNaCl, we also increase the
trust of other works such as [Zin+17; Erb+16] which rely on RFC 7748.

A P P E N D I X O F C H A P T E R 7

This appendix provides supplementary materials of Chapter 7:
± in Section 7.A, the verified section of TweetNaCl,
± in Section 7.B, the Coq definition and formalization of RFC 7748,
± in Section 7.C, the organization of the proof folders and files,
± and finally in Section 7.D, the proof of correctness of inv25519.

7.a the complete x25519 code from tweetnacl

verified c code . We provide below the code we verified.
1 #define FOR(i,n) for (i = 0;i < n;++i)
2 #define sv static void
3
4 typedef unsigned char u8;
5 typedef long long i64 __attribute__((aligned(8)));
6 typedef i64 gf[16];
7
8 sv set25519(gf r, const gf a)
9 {

10 int i;
11 FOR(i,16) r[i]=a[i];
12 }
13
14 sv car25519(gf o)
15 {
16 int i;
17 FOR(i,16) {
18 o[(i+1)%16]+=(i<15?1:38)*(o[i]>>16);
19 o[i]&=0xffff;
20 }
21 }
22
23 sv sel25519(gf p,gf q,int b)
24 {
25 int i;
26 i64 t,c=~(b-1);
27 FOR(i,16) {
28 t= c&(p[i]^q[i]);
29 p[i]^=t;
30 q[i]^=t;
31 }
32 }
33
34 sv pack25519(u8 *o,const gf n)
35 {
36 int i,j,b;
37 gf t,m={0};
38 set25519(t,n);
39 car25519(t);
40 car25519(t);
41 car25519(t);
42 FOR(j,2) {
43 m[0]=t[0]-0xffed;
44 for(i=1;i<15;i++) {
45 m[i]=t[i]-0xffff-((m[i-1]>>16)&1);

215

216 a coq proof of the correctness of x25519 in tweetnacl

46 m[i-1]&=0xffff;
47 }
48 m[15]=t[15]-0x7fff-((m[14]>>16)&1);
49 b=(m[15]>>16)&1;
50 m[14]&=0xffff;
51 b=1-b;
52 sel25519(t,m,b);
53 }
54 FOR(i,16) {
55 o[2*i]=t[i]&0xff;
56 o[2*i+1]=t[i]>>8;
57 }
58 }
59
60 sv unpack25519(gf o, const u8 *n)
61 {
62 int i;
63 FOR(i,16) o[i]=n[2*i]+((i64)n[2*i+1]<<8);
64 o[15]&=0x7fff;
65 }
66
67 sv A(gf o,const gf a,const gf b)
68 {
69 int i;
70 FOR(i,16) o[i]=a[i]+b[i];
71 }
72
73 sv Z(gf o,const gf a,const gf b)
74 {
75 int i;
76 FOR(i,16) o[i]=a[i]-b[i];
77 }
78
79 sv M(gf o,const gf a,const gf b)
80 {
81 int i,j;
82 i64 t[31];
83 FOR(i,31) t[i]=0;
84 FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
85 FOR(i,15) t[i]+=38*t[i+16];
86 FOR(i,16) o[i]=t[i];
87 car25519(o);
88 car25519(o);
89 }
90
91 sv S(gf o,const gf a)
92 {
93 M(o,a,a);
94 }
95
96 sv inv25519(gf o,const gf i)
97 {
98 gf c;
99 int a;

100 set25519(c,i);
101 for(a=253;a>=0;a--) {
102 S(c,c);
103 if(a!=2&&a!=4) M(c,c,i);
104 }
105 FOR(a,16) o[a]=c[a];
106 }
107
108 int crypto_scalarmult(u8 *q,const u8 *n,const u8 *p)
109 {

7.A the complete x25519 code from tweetnacl 217

110 u8 z[32];
111 int r,i;
112 gf x,a,b,c,d,e,f;
113 FOR(i,31) z[i]=n[i];
114 z[31]=(n[31]&127)|64;
115 z[0]&=248;
116 unpack25519(x,p);
117 FOR(i,16) {
118 b[i]=x[i];
119 d[i]=a[i]=c[i]=0;
120 }
121 a[0]=d[0]=1;
122 for(i=254;i>=0;--i) {
123 r=(z[i>>3]>>(i&7))&1;
124 sel25519(a,b,r);
125 sel25519(c,d,r);
126 A(e,a,c);
127 Z(a,a,c);
128 A(c,b,d);
129 Z(b,b,d);
130 S(d,e);
131 S(f,a);
132 M(a,c,a);
133 M(c,b,e);
134 A(e,a,c);
135 Z(a,a,c);
136 S(b,a);
137 Z(c,d,f);
138 M(a,c,_121665);
139 A(a,a,d);
140 M(c,c,a);
141 M(a,d,f);
142 M(d,b,x);
143 S(b,e);
144 sel25519(a,b,r);
145 sel25519(c,d,r);
146 }
147 inv25519(c,c);
148 M(a,a,c);
149 pack25519(q,a);
150 return 0;
151 }

diff from tweetnacl . We provide below the diff between the
original code of TweetNaCl and the code we verified.

1 --- tweetnacl.c
2 +++ tweetnaclVerifiableC.c
3 @@ -5,7 +5,7 @@
4 typedef unsigned char u8;
5 typedef unsigned long u32;
6 typedef unsigned long long u64;
7 -typedef long long i64;
8 +typedef long long i64 __attribute__((aligned(8)));
9 typedef i64 gf[16];

10 extern void randombytes(u8 *,u64);
11

12 @@ -273,18 +273,16 @@
13 sv car25519(gf o)
14 {
15 int i;
16 - i64 c;
17 FOR(i,16) {

218 a coq proof of the correctness of x25519 in tweetnacl

18 - o[i]+=(1LL<<16);
19 - c=o[i]>>16;
20 - o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);
21 - o[i]-=c<<16;
22 + o[(i+1)%16]+=(i<15?1:38)*(o[i]>>16);
23 + o[i]&=0xffff;
24 }
25 }
26

27 sv sel25519(gf p,gf q,int b)
28 {
29 - i64 t,i,c=~(b-1);
30 + int i;
31 + i64 t,c=~(b-1);
32 FOR(i,16) {
33 t= c&(p[i]^q[i]);
34 p[i]^=t;
35 @@ -295,8 +293,8 @@
36 sv pack25519(u8 *o,const gf n)
37 {
38 int i,j,b;
39 - gf m,t;
40 - FOR(i,16) t[i]=n[i];
41 + gf t,m={0};
42 + set25519(t,n);
43 car25519(t);
44 car25519(t);
45 car25519(t);
46 @@ -309,7 +307,8 @@
47 m[15]=t[15]-0x7fff-((m[14]>>16)&1);
48 b=(m[15]>>16)&1;
49 m[14]&=0xffff;
50 - sel25519(t,m,1-b);
51 + b=1-b;
52 + sel25519(t,m,b);
53 }
54 FOR(i,16) {
55 o[2*i]=t[i]&0xff;
56 @@ -353,7 +352,8 @@
57

58 sv M(gf o,const gf a,const gf b)
59 {
60 - i64 i,j,t[31];
61 + int i,j;
62 + i64 t[31];
63 FOR(i,31) t[i]=0;
64 FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
65 FOR(i,15) t[i]+=38*t[i+16];
66 @@ -371,7 +371,7 @@
67 {
68 gf c;
69 int a;
70 - FOR(a,16) c[a]=i[a];
71 + set25519(c,i);
72 for(a=253;a>=0;a--) {
73 S(c,c);
74 if(a!=2&&a!=4) M(c,c,i);
75 @@ -394,8 +394,8 @@
76 int crypto_scalarmult(u8 *q,const u8 *n,const u8 *p)
77 {
78 u8 z[32];
79 - i64 x[80],r,i;
80 - gf a,b,c,d,e,f;
81 + int r,i;

7.A the complete x25519 code from tweetnacl 219

82 + gf x,a,b,c,d,e,f;
83 FOR(i,31) z[i]=n[i];
84 z[31]=(n[31]&127)|64;
85 z[0]&=248;
86 @@ -430,15 +430,9 @@
87 sel25519(a,b,r);
88 sel25519(c,d,r);
89 }
90 - FOR(i,16) {
91 - x[i+16]=a[i];
92 - x[i+32]=c[i];
93 - x[i+48]=b[i];
94 - x[i+64]=d[i];
95 - }
96 - inv25519(x+32,x+32);
97 - M(x+16,x+16,x+32);
98 - pack25519(q,x+16);
99 + inv25519(c,c);

100 + M(a,a,c);
101 + pack25519(q,a);
102 return 0;
103 }

In the following, we provide the explanations of the above changes
to TweetNaCl’s code.

• lines 7-8: We tell VST that long long are aligned on 8 bytes.
• lines 16-23: We remove the undefined behavior as explained in

Section 7.6.
• lines 29-31; lines 60-62: VST does not support for loops over i64,

we convert it into an int.
• lines 39 & 41: We initialize m with 0. This change allows us to

prove the functional correctness of pack25519 without having
to deal with an array containing a mix of uninitialized and
initialized values. A hand iteration over the loop trivially shows
that no uninitialized values are used.

• lines 40 & 42; lines 70 & 71: We replace the FOR loop by set25519.
The code is the same once the function is inlined. This small
change is purely cosmetic but stays in the spirit of TweetNaCl:
keeping a small code size while being auditable.

• lines 50-52: VST does not allow computation in the argument
before a function call. Additionally, clightgen does not extract
the computation either. We add this small step to allow VST to
carry through the proof.

• lines 79-82: VST does not support for loops over i64, we convert
the loop indexes into an int.
In the function calls of sel25519, the specifications requires the
use of int, the value of r being either 0 or 1, we consider this
change safe.

• Lines 90-101: The for loop does not add any benefits to the code.
By removing it we simplify the source and the verification steps
as we do not need to deal with pointer arithmetic. As a result, x
can be limited to only 16 i64, i. e., gf.

220 a coq proof of the correctness of x25519 in tweetnacl

7.b coq definitions

7.b.1 Montgomery Ladder

Generic definition of the ladder:

(* Typeclass to encapsulate the operations *)
Class Ops (T T': Type) (Mod: T → T):=
{
A : T → T → T; (* Add *)
M : T → T → T; (* Mult *)
Zub : T → T → T; (* Sub *)
Sq : T → T; (* Square *)
C_0 : T; (* Constant 0 *)
C_1 : T; (* Constant 1 *)
C_121665: T; (* const (a-2)/4 *)
Sel25519: Z → T → T → T; (* CSWAP *)
Getbit: Z → T' → Z; (* ith bit *)

}.

Local Notation "X + Y" := (A X Y) (only parsing).
Local Notation "X - Y" := (Zub X Y) (only parsing).
Local Notation "X * Y" := (M X Y) (only parsing).

Local Notation "X 2" := (Sq X) (at level 40,
only parsing, left associativity).

Fixpoint montgomery_rec_swap (m : nat) (z : T')
(a: T) (b: T) (c: T) (d: T) (e: T) (f: T) (x: T) (swap:Z) :
(* a: x2 *)
(* b: x3 *)
(* c: z2 *)
(* d: z3 *)
(* e: temporary var *)
(* f: temporary var *)
(* x: x1 *)
(* swap: previous bit value *)
(T * T * T * T * T * T) :=
match m with
| S n ⇒
let r := Getbit (Z.of_nat n) z in

(* k_t = (k >> t) & 1 *)
let swap := Z.lxor swap r in

(* swap ^= k_t *)
let (a, b) := (Sel25519 swap a b, Sel25519 swap b a) in

(* (x2, x3) = cswap(swap, x2, x3) *)
let (c, d) := (Sel25519 swap c d, Sel25519 swap d c) in

(* (z2, z3) = cswap(swap, z2, z3) *)
let e := a + c in (* A = x2 + z2 *)
let a := a - c in (* B = x2 - z2 *)
let c := b + d in (* C = x3 + z3 *)
let b := b - d in (* D = x3 - z3 *)

let d := e2 in (* AA = A2
*)

let f := a2 in (* BB = B2
*)

let a := c * a in (* CB = C * B *)
let c := b * e in (* DA = D * A *)

let e := a + c in (* x3= (DA + CB)2
*)

let a := a - c in (* z3= x1* (DA - CB)2
*)

let b := a2 in (* z3= x1* (DA - CB)2
*)

let c := d - f in (* E = AA - BB *)
let a := c * C_121665 in (* z2 = E * (AA + a24 * E) *)
let a := a + d in (* z2 = E * (AA + a24 * E) *)
let c := c * a in (* z2 = E * (AA + a24 * E) *)

7.B coq definitions 221

let a := d * f in (* x2 = AA * BB *)

let d := b * x in (* z3 = x1* (DA - CB)2
*)

let b := e2 in (* x3 = (DA + CB)2
*)

montgomery_rec_swap n z a b c d e f x r
(* swap = k_t *)

| 0%nat ⇒
let (a, b) := (Sel25519 swap a b, Sel25519 swap b a) in
(* (x2, x3) = cswap(swap, x2, x3) *)

let (c, d) := (Sel25519 swap c d, Sel25519 swap d c) in
(* (z2, z3) = cswap(swap, z2, z3) *)

(a,b,c,d,e,f)
end.

Definition get_a (t:(T * T * T * T * T * T)) : T :=
match t with
(a,b,c,d,e,f) ⇒ a

end.
Definition get_c (t:(T * T * T * T * T * T)) : T :=
match t with
(a,b,c,d,e,f) ⇒ c

end.

7.b.2 RFC in Coq

Instantiation of the Class Ops with operations over Z and modulo
2255 − 19.

Definition modP (x:Z) : Z :=
Z.modulo x (Z.pow 2 255 - 19).

(* Encapsulate in a module. *)
Module Mid.
(* shift to the right by n bits *)
Definition getCarry (n: Z) (m: Z) : Z :=
Z.shiftr m n.

(* logical and with n ones *)
Definition getResidue (n: Z) (m: Z) : Z :=
Z.land n (Z.ones n).

Definition car25519 (n: Z) : Z :=
38 * getCarry 256 n + getResidue 256 n.

(* The carry operation is invariant under modulo *)
Lemma Zcar25519_correct:
forall (n: Z), n:GF = (Mid.car25519 n) :GF.

(* Define Mid.A, Mid.M ... *)
Definition A a b := Z.add a b.
Definition M a b :=
car25519 (car25519 (Z.mul a b)).

Definition Zub a b := Z.sub a b.
Definition Sq a := M a a.
Definition C_0 := 0.
Definition C_1 := 1.
Definition C_121665 := 121665.
Definition Sel25519 (b p q: Z) :=
if (Z.eqb b 0) then p else q.

Definition getbit (i:Z) (a: Z) :=

222 a coq proof of the correctness of x25519 in tweetnacl

if (Z.ltb a 0) then (* a < 0*)
0

else if (Z.ltb i 0) then (* i < 0 *)
Z.land a 1

else (* 0 ≤ a & 0 ≤ i *)
Z.land (Z.shiftr a i) 1.

End Mid.

(* Clamping *)
Definition clamp (n: list Z) : list Z :=
(* set last 3 bits to 0 *)
let x := nth 0 n 0 in
let x' := Z.land x 248 in
(* set bit 255 to 0 and bit 254 to 1 *)
let t := nth 31 n 0 in
let t' := Z.lor (Z.land t 127) 64 in
(* update the list *)
let n' := upd_nth 31 n t' in

upd_nth 0 n' x'.

(* x^{p - 2} *)
Definition ZInv25519 (x: Z) : Z :=
Z.pow x (Z.pow 2 255 - 21).

(* reduction modulo P *)
Definition ZPack25519 (n: Z) : Z :=
Z.modulo n (Z.pow 2 255 - 19).

(* instantiate over Z *)
Instance Z_Ops : (Ops Z Z modP) := {}.
Proof.
apply Mid.A. (* instantiate + *)
apply Mid.M. (* instantiate * *)
apply Mid.Zub. (* instantiate - *)

apply Mid.Sq. (* instantiate x2
*)

apply Mid.C_0. (* instantiate Const 0 *)
apply Mid.C_1. (* instantiate Const 1 *)
apply Mid.C_121665. (* instantiate (a-2)/4 *)
apply Mid.Sel25519. (* instantiate CSWAP *)
apply Mid.getbit. (* instantiate ith bit *)

Defined.

Definition decodeScalar25519 (l: list Z) : Z :=
ZofList 8 (clamp l).

Definition decodeUCoordinate (l: list Z) : Z :=
ZofList 8 (upd_nth 31 l (Z.land (nth 31 l 0) 127)).

Definition encodeUCoordinate (x: Z) : list Z :=
ListofZ32 8 x.

(* instantiate montgomery_rec_swap with Z_Ops *)
Definition RFC (n: list Z) (p: list Z) : list Z :=
let k := decodeScalar25519 n in
let u := decodeUCoordinate p in
let t := montgomery_rec_swap

255 (* iterate 255 times *)
k (* clamped n *)
1 (* x2 *)
u (* x3 *)
0 (* z2 *)
1 (* z3 *)
0 (* dummy *)

7.C organization of the proof files 223

0 (* dummy *)
u (* x1 *)
0 (* previous bit = 0 *) in

let a := get_a t in
let c := get_c t in
let o := ZPack25519 (Z.mul a (ZInv25519 c))
in encodeUCoordinate o.

7.c organization of the proof files

requirements . Our proofs require the use of Coq 8.8.2 for the
proofs and Opam 2.0 to manage the dependencies. We are aware that
there exists more recent versions of Coq; VST; CompCert etc. However,
as updating those often lead to breaking our proofs, after spending
a significant amount of hours on compilation and debugging, we
decided to freeze our dependencies.

associated files . The archive containing the proof is composed
of two folders packages and proofs. The content is used at the same
time as an opam repository to manage the dependencies of the proof
and to provide the Coq code.

The actual proofs are found in the proofs folder in which the reader
will find the directories spec and vst.

packages/ This folder provides all the required Coq dependencies:
ssreflect (1.7), VST (2.0), CompCert (3.2), the elliptic-curves library
by Bartzia & Strub, and the theorem of quadratic reciprocity. For a
future proof approach, the source code of those frozen dependencies is
directly provided and therefore does not rely on external repositories.

proofs/spec/ In this folder the reader will find multiple levels of
implementation of X25519.

• Libs/ contains basic libraries and tools to help use reason with
lists and decidable procedures.

• ListsOp/ defines operators on list such as ZofList and related
lemmas using e. g., Forall.

• Gen/ defines a generic Montgomery ladder which can be instan-
tiated with different operations. This ladder is the stub for the
following implementations.

• High/ contains the theory of Montgomery curves, twists,
quadratic extensions and ladder. It also proves the correctness of
the ladder over F2255−19.

• Mid/ provides a list-based implementation of the basic operations
A, Z, M . . . and the ladder. It makes the link with the theory of
Montgomery curves.

• Low/ provides a second list-based implementation of the basic
operations A, Z, M . . . and the ladder. Those functions are proven
to provide the same results as the ones in Mid/, however their
implementation are closer to C in order facilitate the proof of
equivalence with TweetNaCl code.

224 a coq proof of the correctness of x25519 in tweetnacl

• rfc/ provides our rfc formalization. It uses integers for the basic
operations A, Z, M . . . and the ladder. It specifies the decoding/en-
coding of/to byte arrays (seen as list of integers) as in RFC 7748.

proofs/vst/ Here the reader will find four folders.
• c/ contains the C Verifiable implementation of TweetNaCl.

clightgen will generate the appropriate translation into Clight.
• init/ contains basic lemmas and memory manipulation short-

cuts to handle the aliasing cases.
• spec/ defines as Hoare triple the specification of the functions

used in crypto_scalarmult.
• proofs/ contains the proofs of the above Hoare triples, and

therefore the proof that TweetNaCl code is sound and correct.

7.d proof by reflection of the multiplicative inverse in

gf

In this section we provide a deeper view of the proof of correctness of
inv25519, namely:

The implementation of the multiplicative inverse in TweetNaCl (inv25519)
computes an inverse in Z2255−19.

This proof takes part in three steps, with the last one implementing
the proof by reflection.

1. We prove with VST that inv25519 matches a list implementation
of the inversion Inv25519.

2. We prove that Inv25519 over lists is equivalent to Inv25519_Z

over integers in Z2255−19.

3. We prove that Inv25519_Z actually computes an inverse in
Z2255−19.

step 1 . In order to compute an inverse in Z2255−19, inv25519 uses
Fermat’s little theorem by raising to the power of 2255 − 21 with a
square-and-multiply algorithm. The binary representation of p − 2
implies that every step does a multiplication except for bits 2 and 4

(see Code 7.1).
1 sv inv25519(gf o,const gf i)
2 {
3 gf c;
4 int a;
5 set25519(c,i);
6 for(a=253;a>=0;a--) {
7 S(c,c);
8 if(a!=2&&a!=4) M(c,c,i);
9 }

10 FOR(a,16) o[a]=c[a];
11 }

Code 7.4: Inverse modulo 2255 − 19 in TweetNaCl

7.D proof by reflection of the multiplicative inverse in gf 225

To speed up proofs with the VST, we define Inv25519 with two
functions: a recursive pow_fn_rev to simulate the for loop and a
simple step_pow containing the body.

Definition step_pow (a:Z)
(c:list Z) (g:list Z) : list Z :=
let c := Sq c in
if a ̸=? 2 && a ̸=? 4
then M c g
else c.

Function pow_fn_rev (a:Z) (b:Z)
(c: list Z) (g: list Z)
{measure Z.to_nat a} : (list Z) :=
if a ≤ ? 0
then c
else

let prev := pow_fn_rev (a - 1) b c g in
step_pow (b - a) prev g.

Note that this Function requires a proof of termination. It is
done by proving the well-foundedness of the decreasing argument:
ªmeasure Z.to_nat aº. As a result, calling pow_fn_rev 254 times al-
lows us to reproduce the same behavior as the C definition in Code 7.4.

Definition Inv25519 (x:list Z) : list Z :=
pow_fn_rev 254 254 x x.

Using the VST, we prove that inv25519 matches a list implementation
of the inversion Inv25519. This theorem is found in the associated
materials in proofs/vst/proofs/verif_inv25519.v.

step 2 . We now want to prove that the operations on lists in
Inv25519 are equivalent as if being done on integers modulo 2255 − 19.
Therefore, we define the same functions over integers.

Definition step_pow_Z (a:Z) (c:Z) (g:Z) : Z :=
let c := c * c in
if a ̸=? 2 && a ̸=? 4
then c * g
else c.

Function pow_fn_rev_Z (a:Z) (b:Z) (c:Z) (g: Z)
{measure Z.to_nat a} : Z :=
if (a ≤ ? 0)
then c
else

let prev := pow_fn_rev_Z (a - 1) b c g in
step_pow_Z (b - a) prev g.

Definition Inv25519_Z (x:Z) : Z :=
pow_fn_rev_Z 254 254 x x.

By using Lemma 7.4.1 (M correctly implements a multiplication over
Z2255−19), we prove their equivalence in Z2255−19.

lemma 7 .d.1. The function Inv25519 over list of integers computes the
same result at Inv25519_Z over integers in Z2255−19.

226 a coq proof of the correctness of x25519 in tweetnacl

This is formalized in Coq as follows and is found in the associated
materials in proofs/spec/Low/Inv25519.v.

Lemma Inv25519_Z_GF : forall (g:list Z),
length g = 16 →
(Z16.lst (Inv25519 g)) :GF =
(Inv25519_Z (Z16.lst g)) :GF.

step 3 . Finally, we need to prove that Inv25519_Z is computing
x2255−21. To do so we use a proof by reflection.

Figure 7.8 provides a brief intuition of this technique. First we reify
our goal over a DSL, second we apply a decision procedure on the
expression, and then we infer the desired proof by soundness.

DSL

P pbool

True true

decide(pbool)

denote

Reify

Soundness

∀p ∈ DSL,
decide(p) = true
⇒ denote(p) = True

Figure 7.8: Overview of a proof by reflection.

We define a DSL to express monomials.

definition 7 .d.2. expr_inv denotes an expression which is either a
term, a product of expressions, a square of an expression, or a power of
an expression; By extension formula_inv denotes an equality between two
expressions.

Inductive expr_inv :=
| R_inv : expr_inv
| M_inv : expr_inv → expr_inv → expr_inv
| S_inv : expr_inv → expr_inv
| P_inv : expr_inv → positive → expr_inv.

Inductive formula_inv :=
| Eq_inv : expr_inv → expr_inv → formula_inv.

We introduce an environment, i. e., a partial function vars which given
a positive value returns an integer. This allows us to encapsulate
simple variable such as x, but also more complex expressions as 57xyz.

Record environment := { vars : positive → Z }.

7.D proof by reflection of the multiplicative inverse in gf 227

The denote functions take the environment as argument and are
defined as follows:

Fixpoint e_inv_denote (env:environment) (m:expr_inv) : Z :=
match m with
| R_inv ⇒
vars env 1

| M_inv x y ⇒
(e_inv_denote env x) * (e_inv_denote env y)

| S_inv x ⇒
(e_inv_denote env x) * (e_inv_denote env x)

| P_inv x p ⇒
pow (e_inv_denote env x) (Z.pos p)

end.

Definition f_inv_denote (env:environment) (t:formula_inv) : Prop :=
match t with
| Eq_inv x y ⇒ e_inv_denote env x = e_inv_denote env y
end.

In our use case, as we work on a very simple monomial and we only
have one variable x, we were able to simplify the denote function. A
simple example of this DSL is depicted with the following equality:

Variable x:Z.
Definition env0 := {| vars := fun _:positive ⇒ x |} : environment.

Goal f_inv_denote env0
(Eq_inv (M_inv R_inv (S_inv R_inv))

(P_inv R_inv 3))

= (x * x2 = x3).

On the right side of the goal (x * x2 = x3) depends on x while the
left side (Eq_inv (M_inv R_inv (S_inv R_inv)) (P_inv R_inv 3))

does not. This allows us to use efficient computations (compute) in
our decision procedure to prove formulas in formula_inv. We use the
following simple decidable steps: (1) we compute the power of an
expression with compute_pow_expr_inv, (2) we compare the values of
both side and decide over their equality.

Fixpoint compute_pow_expr_inv (t:expr_inv) : Z :=
match t with
| R_inv ⇒ 1 (* power of a term is 1. *)
| M_inv x y ⇒ (* x^a * x^b = x^{a+b}. *)
(compute_pow_expr_inv x) + (compute_pow_expr_inv y)

| S_inv x ⇒ (* (x^a)2 = x^{2a}. *)
2 * (compute_pow_expr_inv x)

| P_inv x p ⇒ (* (x^b)^a = x^{a*b}. *)
(Z.pos p) * (compute_pow_expr_inv x)

end.

Definition decide_e_inv (l1 l2:expr_inv) : bool :=
(compute_pow_expr_inv l1) == ? (compute_pow_expr_inv l2).

Definition decide_f_inv (f:formula_inv) : bool :=
match f with
| Eq_inv x y ⇒ decide_e_inv x y
end.

We prove our decision procedure correct:

228 a coq proof of the correctness of x25519 in tweetnacl

lemma 7 .d.3 (soundness). For all formulas f , if the decision over f
returns true, then the denoted equality by f is true.

Lemma decide_formula_inv_impl :
forall (f:formula_inv),
decide_f_inv f = true → f_inv_denote f.

Our DSL captures simple monomials, however we also need to
compute the value of the exponent used by the square-and-multiply
algorithm in Inv25519_Z. To do so, we define step_inv and pow_inv

to mirror the behavior of step_pow_Z and respectively pow_fn_rev_Z

over our DSL. By using the denote function we ensure the equality.

Definition step_inv a c g : expr_inv :=
let c := (S_inv c) in
if a ̸=? 2 && a ̸=? 4

then M_inv (S_inv c) g
else (S_inv c).

(* Similar definition of pow_inv *)
Lemma step_inv_step_pow_eq :
forall (a:Z) (c:expr_inv) (g:expr_inv),
e_inv_denote (step_inv a c g) =
step_pow_Z a (e_inv_denote c) (e_inv_denote g).

Lemma pow_inv_pow_fn_rev_eq :
forall (a:Z) (b:Z) (c:expr_inv) (g:expr_inv),
e_inv_denote (pow_inv a b c g) =
pow_fn_rev_Z a b (e_inv_denote c) (e_inv_denote g).

We then derive the following:

lemma 7 .d.4. With an appropriate choice of variables, pow_inv denotes
Inv25519_Z.

By reification to our DSL (Lemma 7.D.4) and by applying our deci-
sion (Lemma 7.D.3), we prove the subsequent lemma:

lemma 7 .d.5. Inv25519_Z computes an inverse in Z2255−19.

This is formalized as (using Fermat’s little theorem):

Theorem Inv25519_Z_correct :
forall (x:Z),

Inv25519_Z x = pow x (2255 − 21).

From Lemma 7.D.1 and Lemma 7.D.5, we conclude the functional
correctness of the inversion over Z2255−19.

corollary 7 .d.6. Inv25519 computes an inverse in Z2255−19.

Corollary Inv25519_Zpow_GF :
forall (g:list Z),
length g = 16 →
Z16.lst (Inv25519 g) :GF =

(pow (Z16.lst g) (2255 − 21)) :GF.

Part IV

S TA N D A R D I Z I N G

8K A N G A R O O T W E LV E : FA S T H A S H I N G B A S E D O N
K e c c a k - p

Most cryptography involves careful trade-offs between performance
and security. The performance of a cryptographic function can be
objectively measured, although it can yield a wide spectrum of figures
depending on the variety of hardware and software platforms that the
users may be interested in. Out of these, performance on widespread
processors is easily measurable and naturally becomes the most visible
feature. Security on the other hand cannot be measured. The best one
can do is to obtain security assurance by relying on public scrutiny
by skilled cryptanalysts. This is a scarce resource and the gaining of
insight requires time and reflection. With the growing emphasis on
provable security reduction of modes, the fact that the security of the
underlying primitives is still based on public scrutiny should not be
overlooked.

In this chapter we present the hash function KangarooTwelve.
We give its specifications in Section 8.2 and our design rationale
in Section 8.3. In Section 8.4 we introduce a closely related variant
called MarsupilamiFourteen. Furthermore, in Section 8.5 we discuss
implementation aspects and display benchmarks for recent processors.

8.1 introduction

In a few words, KangarooTwelve is a hash function Ðor more exactly
an eXtendable Output Function (XOF)Ð that makes use of a tree
hash mode with Sakura encoding [NIS15; Ber+14a] and the sponge
construction [Ber+08a], both proven secure. Its underlying permutation
is a member of the Keccak-p[1600, nr] family, differing from that
of Keccak only in the number of rounds. Since its publication in
2008, the round function of Keccak was never tweaked [Ber+08b].
Moreover, as for most symmetric cryptographic primitives, third-party
cryptanalysis has been applied to reduced-round versions of Keccak.
Hence KangarooTwelve’s security assurance directly benefits from
more than twelve years of public scrutiny, including all cryptanalysis
during and after the SHA-3 competition [Ber+17b].

KangarooTwelve gets its low computational workload per bit from
using the Keccak- f [1600] permutation reduced to 12 rounds. Clearly,
12 rounds provide less safety margin than the full 24 rounds in SHA-3
and shake functions [NIS15]. Still, the safety margin provided by 12

rounds is comfortable as, e. g., the best published collision attacks at
time of writing break Keccak only up to 6 rounds [DDS13; DDS14;
SLG17a; SLG17b].

231

232 kangarootwelve

The other design choice that gives KangarooTwelve great speed for
long messages is the use of a tree hash mode. This mode is transparent
for the user in the sense that the message length fully determines the
tree topology. Basically, the mode calls an underlying sponge-based
compression function for each 8192-byte chunk of message and finally
hashes the concatenation of the resulting digests. We call this the final
node growing approach. Clearly, the chunks can be hashed in parallel.

The main advantage of the final node growing approach is that
implementors can decide on the degree of parallelism their programs
support. A simple implementation could compute everything serially,
while another would process two, four or more branches in parallel
using multiple cores, or more simply, a SIMD instruction set such as the
Intel AVX2. Future processors can even contain an increasing number
of cores, or wider SIMD registers as exemplified by the recent AVX-512

instruction set, and KangarooTwelve will be readily able to exploit
them. The fixed length of the chunks and the fact that the tree topology
is fully determined by the message length improve interoperability:
the hash result is independent of the amount of parallelism exploited
in the implementation.

KangarooTwelve is not the only Keccak-based parallel hash mode.
In late 2016, NIST published the SP 800-185 standard, including a
parallelized hash mode called ParallelHash [NIS16]. Compared to
ParallelHash, KangarooTwelve improves on the speed for short mes-
sages. ParallelHash compresses message chunks to digests in a first
stage and compresses the concatenation of the digests in a second
stage. This two-stage hashing introduces an overhead that is costly for
short messages. In KangarooTwelve we apply a technique called kan-
garoo hopping: It merges the hashing of the first chunk of the message
and that of the chaining values of the remaining chunks [Ber+14a]. As
a result, the two stages reduce to one if the input fits in one chunk
with no overhead whatsoever.

Finally, KangarooTwelve is a concrete application of the Sakura en-
coding, which yields secure tree hash modes by construction [Ber+14a].

8.2 specifications of kangarootwelve

KangarooTwelve is an eXtendable Output Function (XOF) [Per14]. It
takes as input a message M and an optional customization string C,
both byte strings of variable length.

KangarooTwelve produces unrelated outputs on different cou-
ples (M, C). The customization string C is meant to provide domain
separation, namely, for two different customization strings C1 ̸= C2,
KangarooTwelve gives two independent functions of M. In practice,
C is typically a short string; such as a name, an address, or an identifier
(e. g., URI, OID). KangarooTwelve naturally maps to a XOF with a
single input string M by setting the customization string input C to

8.2 specifications of kangarootwelve 233

the empty string. This allows implementing it with a classical hash
function Application Programming Interface (API).

As a XOF, the output of KangarooTwelve is unlimited, and the
user can request as many output bits as desired. It can be used for
traditional hashing simply by generating outputs of the desired digest
size.

We provide a reference implementation in Section 8.A and in the
associated materials of this thesis (Section 1.3).

8.2.1 The inner compression function F

The core of KangarooTwelve is the Keccak-p[1600, nr = 12] permu-
tation, i. e., a version of the permutation used in shake and SHA-3
instances reduced to nr = 12 rounds [NIS15]. We build a sponge func-
tion F on top of this permutation with capacity set to c = 256 bits and
therefore with rate r = 1600− c = 1344. It makes use of multi-rate
padding, indicated by pad10∗1. Following [NIS15], this is expressed
formally as:

F = sponge[Keccak-p[1600, nr = 12], pad10∗1, r = 1344].

On top of the sponge function F, KangarooTwelve uses a Sakura-
compatible tree hash mode, which we now describe shortly.

8.2.2 The merged input string S

First, we merge M and C to a single input string S in a reversible way
by concatenating:

1. the input message M;

2. followed by the customization string C;

3. and followed by the length in bytes of C encoded using
length_encode (∥C∥) as in Algorithm 8.

Then, the input string S is cut into chunks of B = 8192 bytes, i. e.,

S = S0∥S1∥ . . . ∥Sn−1,

with n =
⌈ ∥S∥

B

⌉

and where all chunks except the last one must have
exactly B bytes. Note that there is always one block as S consists of at
least one byte.

8.2.3 The tree hash mode

When ∥S∥ > B, we have n > 1 and KangarooTwelve builds a
tree with the following final node Node∗ and inner nodes Nodei with
1 ≤ i ≤ n− 1:

Nodei ← Si∥‘110’

8.3 rationale 235

8.2.4 Security claim

We make a flat sponge claim [Ber+07] with 255 bits of claimed capacity
in Claim 8.2.1. Informally, it means that KangarooTwelve shall offer
the same security strength as a random oracle whenever that offers a
strength below 128 bits and a strength of 128 bits in all other cases. We
discuss the implications of the claim more in depth in Section 8.3.1.

claim 8 .2 .1 (flat sponge claim [Ber+07]). The success proba-
bility of any attack on KangarooTwelve shall not be higher than the sum
of that for a random oracle and

1− e−
N2

2256 ,

with N the attack complexity in calls to Keccak-p[1600, nr = 12] or its
inverse. We exclude from the claim weaknesses due to the mere fact that the
function can be described compactly and can be efficiently executed, e. g., the
so-called random oracle implementation impossibility [MRH04], as well as
properties that cannot be modeled as a single-stage game [RSS11].

Note that 1− e−
N2

2256 <
N2

2256 .

8.3 rationale

In this section, we provide some more in-depth explanations on the
design choices in KangarooTwelve.

8.3.1 Implications of the security claim

The flat sponge claim covers all attacks up to a given security strength of
128 bits. Informally, saying that a cryptographic function has a security
strength of s bits means that no attacks exist with complexity N and
success probability p such that N/p < 2s [MW18].

The claim covers quasi all practically relevant security of Kanga-
rooTwelve including that of traditional hashing: collision, preimage
and second preimage resistance. To achieve 128-bit security strength,
the output n must be chosen long enough so that there are no generic
attacks (i. e., also applicable to a random oracle) that violate 128-bit
security. So for 128-bit (second) preimage security the output should
be at least 128 bits, and for 128-bit collision security the output should
be at least 256 bits.

For many primitives the security strength that can be claimed de-
grades under multi-target attacks by log2 M bits with M the number of
targets. This is not the case for the flat sponge claim. As an example, let
us take the case of a multi-target preimage attack versus a single-target
preimage attack.

236 kangarootwelve

• In a (single-target) preimage attack, the adversary is given a n-bit
challenge y and has to find an input x such that ⌊ f (x)⌋n = y. A
random oracle offers n bits of security strength: After N attempts,
the total success probability is p with p ≈ N2−n. So we have that
N/p ≈ 2n for N < 2n and the security strength for a random
oracle is n. For KangarooTwelve we claim security strength
min(n, 128) bits in this case.

• In an M-target preimage attack, the adversary is given M chal-
lenges, y1 to yM, and she succeeds if she finds an input x such
that ⌊ f (x)⌋n = yi for any of the challenges. A random oracle
with N attempts has a success probability p with of p ≈ MN2−n,
and hence N/p ≈ 2n/M. So the security strength for the ran-
dom oracle reduces to n− log M bits. For KangarooTwelve we
claim security strength min(n− log M, 128) bits in this case.

Clearly, the reduction in security due to M targets is generic and
independent of the security strength. It can be compensated for by
increasing the output length n by log M bits.

8.3.2 Security of the mode

The security of the mode, or the generic security, relies on both the
sponge construction and on the tree hash mode. The latter is Sakura-
compatible so that it automatically satisfies the conditions of soundness
and guarantees security against generic attacks, see [Ber+14a, Theo-
rem 1] and [Ber+14b, Theorem 1]. In both cases, the bottleneck is the
ability to generate collisions in the chaining values, or equivalently,
collisions of the inner hash function.

The probability of inner collisions in the sponge construction is
N2/2c+1, with N the number of blocks [Ber+08a]. Regarding the colli-
sions in the chaining values of the tree hash mode, the probability is
at most q2/2c+1 [Ber+14b, Theorem 1] with q the number of queries
to F. Since each query to F implies at least one block be processed by
the sponge construction, we have q ≤ N and we can bound the sum
of the two probabilities as N2/2c+1 + q2/2c+1 ≤ N2/2(c−1)+1. This
expression is equivalent as if c was one bit less than with a single
source of collisions, and Claim 8.2.1 takes this into account by setting
the claimed capacity to c− 1 = 255 bits.

We formalize the security of KangarooTwelve’s mode of operation
in the following theorem. We can see the combination of the tree hash
mode and the sponge construction as applied in KangarooTwelve as
a mode of operation of a permutation and call it K.

theorem 8 .3 .1. The advantage of differentiating K, where the underly-
ing permutation is uniformly chosen among all the possible 1600-bit permu-
tations, is upper bounded by

2N2 + N
2c+1 ,

with N the number of calls to the underlying permutation.

8.3 rationale 237

Proof. By the triangle inequality, the advantage in distinguishing K
calling a random permutation from a random oracle is upper bounded
by the sum of two advantages:

• that of distinguishing the tree hash mode calling as inner func-
tion a random function F from a random oracle;

• that of distinguishing the sponge construction calling a random
permutation from a random function.

The former advantage is upper bounded by q2/2c+1, where q is the
number of calls to F . This follows from Theorem 1 of [Ber+14b] for
any sound tree hash mode, and from Theorem 1 of [Ber+14a] that says
that any Sakura-compatible tree hash mode is sound. We show that
the tree hash mode is indeed Sakura-compatible in Section 8.3.3.

Following Theorem 2 of [Ber+08a], the latter advantage is upper
bounded by (N2 + N)/2c+1. Adding the two bounds and using q ≤ N
proves our theorem.

8.3.3 Sakura compatibility

To show Sakura-compatibility, we use the following terminology. The
inputs to the underlying hash function are called nodes. Each node
consists of one or more hops, and a hop is either a chunk of the message
or a sequence of chaining values.

The encoding of the nodes follows [Ber+14a, Section 3.1]:
• When n = 1, the tree reduces to a single node. This is the final

node, and it contains a single message hop consisting of the
input string S followed by the frame bits ªmessage hopº ‘1’ and
ªfinal nodeº ‘1’.

• When n > 1, there are inner nodes and the final node.
– Each inner node contains a message hop consisting of a

chunk Si followed by the frame bit ªmessage hopº ‘1’; a
simple padding bit ‘1’ and ªinner nodeº ‘0’.

– The final node contains two hops: a message hop followed
by a chaining hop. The message hop is the first chunk of
the input string S0 followed by the frame bit ªmessage
hopº ‘1’ and a padding string ‘1’∥‘062’ to align the chaining
hop to 64-bit boundaries. The chaining hop consists of the
concatenation of the chaining values, the coded number
of chaining values (length_encode(n− 1)), the indication
that there was no interleaving (I = ∞, coded with the bytes
0xFF∥0xFF), and the frame bits ªchaining hopº ‘0’ and ªfinal
nodeº ‘1’.

238 kangarootwelve

8.3.4 Choice of B

We fix the size of the message chunks to make KangarooTwelve a
function without parameters. This frees the user from the burden of
this technical choice and facilitates interoperability.

In particular, we chose B = 8192. First, we chose a power of two
as this can help to fetch bulk data in time-critical applications. For
instance, when hashing a large file, we expect the implementation to
be faster and easier if the chunks contain a whole number of disk
sectors.

As for the order of magnitude of B, we took into account following
considerations. For each B-byte block there is a 32-byte chaining value
in the final node, giving rise to a relative processing overhead of about
32/B. Choosing B = 213, this is only 2−8 ≈ 0.4%.

Another concern is the number of unused bytes in the last r-bit
block of the input to F. We have r = 1344 bits or R = r/8 = 168
bytes. When cutting the chunk Si into blocks of R bytes, it leaves
W = −(B + 1) mod R unused bytes in the last block. It turns out
that W reaches a minimum for B = 27+6n with n ≥ 0 an integer. Its
relative impact, W

B , decreases as B increases. For small values, e. g.,
B ∈ {128, 256, 512}, this is about 30%, while for B = 8192 it drops
below 0.5%.

There is a tension between a larger B and the exploitable parallelism.
Increasing B would further reduce these two overhead factors, but it
would also delay the benefits of parallelism to longer messages.

Finally, the choice of B bounds the degree of parallelism that an
implementation can fully exploit. An implementation can in principle
compute the final node and leaves in parallel, but if more than B/32
leaves are processed at once, the final node grows faster than B bytes
at a time. The chosen value of B allows a parallelism up to degree
B/32 = 256.

8.3.5 Choice of the number of rounds

Opting for the Keccak-p[1600, nr = 12] permutation is a drastic re-
duction in the number of rounds compared to the nominal Keccak

and to the SHA-3 standard. Still, there is ample evidence from third-
party cryptanalysis that the switch to Keccak-p[1600, nr = 12] leaves
a safety margin similar to the one in the SHA-2 functions.

Currently, the best collision attack applicable to KangarooTwelve

or any SHA-3 instance works only when the permutation is reduced to
5 rounds [SLG17a]. The attack extends to 6 rounds if more degrees of
freedom are available and requires a reduction of the capacity from
256 to 160 bits. Preimage attacks reach an even smaller number of
rounds [GLS16]. Hence, our proposal has a safety margin of 7 out of
12 rounds with respect to collision and (second) preimage resistance.

8.4 marsupilamifourteen 239

Structural distinguishers is the term used for properties of a specific
function that are very unlikely to be present in a random function.
Zero-sum distinguishers were applied to the Keccak-p[1600, nr] family
of permutations in a number of publications [AM09; BCC11; GLS16].
They allow producing a set of input and of output values that both
sum to zero, and this in about half the time it would be needed on
a random permutation with only black-box access. These structural
distinguishers are of nice theoretical interest, but they do not pose a
threat as they do not extend to distinguishers on sponge functions that
use Keccak-p[1600, nr], see, e. g., [SKC17].

The structural distinguisher on the Keccak sponge function that
does reach the highest number of rounds is the keystream prediction
by Dinur et al. [Din+15]. It works when the permutation is reduced to
9 rounds, with a time and data complexity of 2256, and allows them
to predict one block of output. This is above the security claim of
KangarooTwelve, but the same authors propose a variant that works
on 8 rounds with a time and data complexity of 2128, leaving a safety
margin of 4 rounds or 33% for KangarooTwelve against this rather
academic attack. Examples of structural distinguishers for the Keccak

sponge function with practical complexity and reaching the highest
number of rounds are reported by Huang et al. and work up to 7

rounds [Hua+17].
In comparison, SHA-256 has a collision attack on 31 (out of 64)

steps and its compression function on 52 steps [LIS12; MNS13]. SHA-
512’s compression function admits collision attacks with practical
complexities for more than half of its steps [DEM15].

8.4 marsupilamifourteen

While KangarooTwelve claims a strong notion of 128-bit security
strength, and we believe any security beyond it is purely of theoretical
interest, some users may wish to use a XOF or hash function with
higher security strength. In particular, when defining a cipher suite
or protocol aiming for 256-bit security strength, all cryptographic
functions shall have at least 256-bit security. Coming forward to such
requests, in this section we present a variant of KangarooTwelve

with 511-bit claimed capacity.
Addressing a claimed capacity of 511 bits requires an increase of

both the capacity in F and the length of chaining values in the tree
hash mode to at least 512 bits. Taking exactly c = 512 bits is sufficient
for resisting generic attacks below the claim. As for Keccak-p-specific
attacks, the increase of the claimed capacity to 511 bits increases the
available budget of attackers and hence reduces the safety margin. In
many types of attack, adding a round in the primitive (permutation
or block cipher) increases the attack complexity by a large factor. Or
the other way round, if one wishes to keep the same safety margin,

240 kangarootwelve

an increase of the attack complexity must be compensated by adding
rounds.

We did the exercise and the result is MarsupilamiFourteen. It
has the same specifications as KangarooTwelve, with the following
exceptions:

• The capacity and chaining values are 64-byte long instead of 32

bytes. This reduces the sponge rate in F to 136 bytes.
• The number of rounds of Keccak-p[1600, nr] is 14 instead of 12.
• The claimed capacity in the flat sponge claim is 511 bits instead

of 255.
The computational workload per bit is roughly 45% higher than that
of KangarooTwelve.

Naturally, even thicker safety margins are achieved with the stan-
dard FIPS 202 instances or ParallelHash [NIS15; NIS16].

8.5 implementation

We implemented KangarooTwelve in C and made it available in the
Keccak code package (KCP) [Ber+16]. We now review different aspects
of this implementation and its performance.

8.5.1 Byte representation

KangarooTwelve assumes that its inputs M and C are byte strings.
Sakura encoding works at the bit level and adds padding and suffixes
so that the input to the function F is a string of bits whose length is in
general not a multiple of 8.

It is common practice in implementations of Keccak to represent
the last few bits of a string as a delimited suffix [Ber+16]. The delimited
suffix is a byte that contains the last |X| mod 8 bits of a string X,
with |X| the length of X in bits, followed by the delimiter bit ‘1’, and
ending with the necessary number of bits ‘0’ to reach a length of 8 bits.
When absorbing the last block in the sponge function F, the delimiter
bit coincides with the first bit ‘1’ of the pad10∗1 padding rule. An
implementation can therefore process the first ⌊|X|/8⌋ bytes of the
string S and, in the last block, simply add the delimited suffix and the
second bit of the pad10∗1 padding rule at the last position of the outer
part of the state (i. e., at position r− 1, with r the rate).

Following the convention in Section 2.1, the delimited suffix of a
string with last bits (s0, . . . , sn−1) can be represented by the value
2n + ∑

n−1
i=0 si2i in hexadecimal. For KangarooTwelve, this concretely

means that the final node with ∥S∥ ≤ B has suffix ‘11’ and delimited
suffix 0x07. With ∥S∥ > B the intermediate nodes with trailing bits
‘110’ use 0x0B (as depicted in Figure 8.2), and the final node ending
with ‘01’ will have 0x06 as delimited suffix.

242 kangarootwelve

the optimized permutation-level functions through an interface called
SnP (for a single permutation) or PlSnP (for permutations computed
in parallel) [Ber+16].

To input large messages M, the state to maintain between two calls
internally uses two queues: one for the final node and one for the
current leaf. To save memory, the input bytes are absorbed directly
into the state of F as they arrive. Hence, the state reduces to two times
the state of F. Of course, if a message is known to be smaller than or
equal to B bytes, one could further save one queue.

8.5.3 256-bit SIMD

Current mainstream PC processors, in the Intel Haswell and Skylake
families, support a 256-bit SIMD instruction set called AVX2. We can
exploit it to compute 4×Keccak-p[1600, nr = 12] efficiently, even on
a single core.

On an Intel Core i5-6500 (Skylake), we measured that one evaluation
of Keccak-p[1600, nr = 12] takes about 450 cycles, while 2 in parallel
about 730 cycles and 4× Keccak-p[1600, nr = 12] about 770 cycles.
This does not include the time needed to add the input bytes to the
state. Yet, this clearly points out that the time per byte decreases with
the degree of parallelism.

Figure 8.4 displays the number of cycles for input messages up
to 150, 000 bytes. Microscopically, the computation time steps up for
every additional R = 168 bytes, but this is not visible on the figure.
The time needed to hash messages of length smaller than 168 bytes
thus represents the smallest granularity and is reported in Table 8.1.
Note that if many very short messages have to be processed, they can
be batched to use a parallel implementation. This case is also reported
in Table 8.1.

Macroscopically, when ∥S∥ < B, the time is a straight line with
a slope of about 2.89 cycles/byte, i. e., the speed for F implemented
serially. At ∥S∥ = B = 8192, there is a slight bump (a) as the tree gets
a leaf, which causes an extra evaluation of Keccak-p[1600, nr = 12].
When ∥S∥ = 3B = 24, 576, two leaves can be computed in parallel and
the number of cycles drops. When ∥S∥ = 5B = 40, 960, four leaves can
be computed in parallel and we see another drop. From then on, the
same pattern repeats and one can easily identify the slopes of serial,
×2 and ×4 parallel implementations of Keccak-p[1600, nr = 12].

In our implementation, the final node is always processed with a
serial implementation. In principle, a more advanced implementation
could process the final node in parallel with the leaves. In more details,
it would process the first chunk S0 in parallel with the first few leaves,
and it would buffer about B bytes of chaining values and to process
them in parallel with the next leaves. However, at this point, we
preferred code simplicity over speed optimization. Similarly, one could
in principle remove the peaks of Figure 8.4 and make it monotonous. It

8.6 conclusion 245

Table 8.1: The overall speed for very short messages (∥S∥ < 168) in cycles, very
short messages when batched in cycles/message, for short messages
(∥S∥ ≤ 8192) and for long (∥S∥ ≫ 8192) messages in cycles/byte.
The figures assume a single core in each case.

Messages

Processor Intel Very short Batched v.s. Short Long

i5-4570 (Haswell) 618 c 242 c/m 3.68 c/b 1.44 c/b

i5-6500 (Skylake) 486 c 205 c/m 2.89 c/b 1.22 c/b

i7-7800X (SkylakeX) 395 c 92 c/m 2.35 c/b 0.55 c/b

some SHA-3 instances [NIS15; NIS16]. For consistency, wherever possi-
ble we performed benchmarks on three machines in our possession.
Moreover, we cross-checked with the publicly available eBACS re-
sults [BL] and in case of discrepancy, we selected the fastest. For the
traditional hash functions, the fastest implementation often came from
OpenSSL [Opea]. For Blake2, we included some specific AVX2 code
by Samuel Neves [Nev]. Note that the comparison on SkylakeX must
be taken with care, as not all implementations available at the time of
this benchmarking are fully optimized for the AVX-512 instruction set.

Table 8.2 shows the results. We first list hash functions that explicitly
exploit SIMD instructions with a built-in tree hash mode, such as Par-
allelHash and Blake2{b,s}p, and compare them to KangarooTwelve

for long messages (or when it is used for hashing multiple messages
in parallel).

It is interesting to compare the other hash functions to Kanga-
rooTwelve when it is restricted to serial processing (as for short
messages), to see its speed gain already before the parallelism kicks
in. Of course, such a restriction does not exist when hashing a large
file, and in practice the comparison should also be made with Kanga-
rooTwelve for long messages.

8.6 conclusion

KangarooTwelve can be seen as a new member of the Keccak family.
It inherits all the properties of the family such as suitability in hardware
and resistance against side-channel attacks, but grew up with a strong
focus on software performance and interoperability. We tuned the
mode and the primitive to offer a tremendous computational speedup
in many applications while keeping a comfortable security margin. The
latter is confirmed by the cryptanalysis results on Keccak accumulated
over the last ten years, which are directly applicable to the new sibling.
Also, all existing Keccak implementations can be reused with minimal
effort thanks to the layered approach in the design. For instance,

246 kangarootwelve

Table 8.2: Speed comparison. All figures are in cycles per byte for long messages,
unless otherwise specified.

Function SkylakeX Skylake Haswell

KangarooTwelve 0.55 1.22 1.44

KangarooTwelve (≤ 8KiB) 2.35 2.89 3.68

ParallelHash128 0.96 2.31 2.73

Blake2bp 1.39 1.34 1.37

Blake2sp 1.22 1.29 1.39

shake128 4.28 5.56 7.09

MD5 4.33 4.54 4.93

SHA-1 3.05 3.07 4.15

SHA-256 6.65 6.91 9.27

SHA-512 4.44 4.64 6.54

Blake2b 2.98 3.04 3.08

Blake2s 4.26 4.85 5.34

Blake-256 5.95 6.76 7.52

Blake-512 4.48 5.19 5.68

Grùstl-256 7.24 8.13 9.35

Grùstl-512 9.95 11.31 13.51

JH 13.04 15.14 15.09

Skein 4.48 5.18 5.34

KangarooTwelve benefits immediately from the new SHA-3 hardware
support recently introduced in the ARMv8.2 instruction set [ARM].

The speedup benefits to both low-end and high-end processors.
For the low end, one immediately benefits from the reduction in the
number of rounds, and care was taken not to add overhead in the case
of short messages.

At the high end, we observed that KangarooTwelve gets significant
performance improvements in recent processors, which go beyond
the mere gain due to parallelism. Part of these improvements come
from the choice of low-latency Boolean operations in the primitive that
superscalar architectures can implement efficiently, as demonstrated
in the latest Intel’s SkylakeX processors with the introduction of three-
input binary functions.

On such a processor, KangarooTwelve processes long messages
at 0.55 cycles/byte. At this speed, it would require only one of its
cores to process, in real-time, the output of 10 high-speed solid-state
drives (SSD), i. e., a cumulated bandwidth of more than 7 GB/s per core
(assuming a clock frequency of 4 GHz). This simply illustrates that
with KangarooTwelve the speed of hashing is no longer a bottleneck
in software applications.

A P P E N D I X O F C H A P T E R 8

8.a kangarootwelve code

We give the Python 3 reference code of KangarooTwelve from the
XKCP [Ber+18; Ber+]. Code 8.1 implements Keccak-p[1600, nr], which
is then used in Code 8.2 to build the sponge function F. The length
encode function and KangarooTwelve are displayed in Code 8.3.

def ROL64(a, n):
return ((a >> (64-(n%65))) + (a << (n%64))) % (1 << 64)

def KeccakP1600onLanes(st, nrRounds):
R = 1
for round in range(24):
if (round + nrRounds >= 24):

Theta
C = [st[x][0] ^ st[x][1] ^ st[x][2] ^ st[x][3] ^ st[x][4] \
for x in range(5)]

D = [C[(x+4)%5] ^ ROL64(C[(x+1)%5], 1) for x in range(5)]
st = [[st[x][y]^D[x] for y in range(5)] for x in range(5)]
Pi
(x, y) = (1, 0)
current = st[x][y]
for t in range(24):
(x, y) = (y, (2*x+3*y)%5)
(current, st[x][y]) = \
(st[x][y], ROL64(current, (t+1)*(t+2)//2))

Chi
for y in range(5):
T = [st[x][y] for x in range(5)]
for x in range(5):
st[x][y] = T[x] ^((~T[(x+1)%5]) & T[(x+2)%5])

Iota
for j in range(7):
R = ((R << 1) ^ ((R >> 7)*0x71)) % 256
if (R & 2):
st[0][0] = st[0][0] ^ (1 << ((1<<j)-1))

else:
for j in range(7):
R = ((R << 1) ^ ((R >> 7)*0x71)) % 256

return st

def load64(b):
return sum((b[i] << (8*i)) for i in range(8))

def store64(a):
return bytes((a >> (8*i)) % 256 for i in range(8))

def KeccakP1600(state, nrRounds):
lanes = [[load64(state[8*(x+5*y):8*(x+5*y)+8])

for y in range(5)] for x in range(5)]
lanes = KeccakP1600onLanes(lanes, nrRounds)
state = b''.join([store64(lanes[x][y])

for y in range(5) for x in range(5)])
return bytearray(state)

Code 8.1: The Keccak-p[1600, nr] permutations.

247

248 kangarootwelve

def F(inputBytes, delimitedSuffix , outputByteLen):
outputBytes = b''
state = bytearray([0 for i in range(200)])
rateInBytes = 1344//8
blockSize = 0
inputOffset = 0
=== Absorb all the input blocks ===
while(inputOffset < len(inputBytes)):

blockSize = min(len(inputBytes)-inputOffset, rateInBytes)
for i in range(blockSize):
state[i] = state[i] ^ inputBytes[i+inputOffset]

inputOffset = inputOffset + blockSize
if (blockSize == rateInBytes):
state = KeccakP1600(state, 12)
blockSize = 0

=== Do the padding and switch to the squeezing phase ===
state [blockSize] = state[blockSize] ^ delimitedSuffix
if (((delimitedSuffix & 0x80) != 0)

and (blockSize == (rateInBytes-1))):
state = KeccakP1600(state, 12)

state [rateInBytes-1] = state[rateInBytes-1] ^ 0x80
state = KeccakP1600(state, 12)
=== Squeeze out all the output blocks ===
while(outputByteLen > 0):

blockSize = min(outputByteLen, rateInBytes)
outputBytes = outputBytes + state[0:blockSize]
outputByteLen = outputByteLen - blockSize
if (outputByteLen > 0):
state = KeccakP1600(state, 12)

return outputBytes

Code 8.2: The function F.

def length_encode(x):
S = b''
while(x > 0):

S = bytes([x % 256]) + S
x = x//256
S = S + bytes([len(S)])

return S

def KangarooTwelve(inputMessage, customizationString, outputByteLen):
B = 8192
c = 256
S = inputMessage + \

customizationString + \
length_encode(len(customizationString))

=== Cut the input string into chunks of B bytes ===
n = (len(S)+B-1)//B
Si = [bytes(S[i*B:(i+1)*B]) for i in range(n)]
if (n == 1):

=== Process the tree with only a final node ===
return F(Si[0], 0x07, outputByteLen)

else:
=== Process the tree with kangaroo hopping ===
CVi = [F(Si[i+1], 0x0B, c//8) for i in range(n-1)]
NodeStar = Si[0] + b'\x03\x00\x00\x00\x00\x00\x00\x00' \
+ b''.join(CVi) \
+ length_encode(n-1) + b'\xFF\xFF'

return F(NodeStar, 0x06, outputByteLen)

Code 8.3: The function length_encode and KangarooTwelve.

9T H E I E T F - I RT F S TA N D A R D I Z AT I O N P R O C E S S

Designing an algorithm and ensuring its security strength does not
necessarily translate into an immediate use by companies. They need
to respect governments or international standards such as FIPS by the
NIST or ISO by the International Organization for Standardization (ISO).

In this short chapter we first provide a brief overview of the IETF,
then we describe the creation of an RFC, and we illustrate this process
with timeline of the standardization of KangarooTwelve as defined in
Chapter 8.

In the last section we list the RFC mentioned in this chapter, provid-
ing a quick-access reference to the reader.

9.1 the ietf , the irtf , and the cfrg

The Internet Engineering Task Force (IETF) is the organization respon-
sible for the Internet standards, and it is most notably known for the
internet protocol suite: the Transmission Control Protocol (TCP) and
the Internet Protocol (IP), defined in RFC 675, RFC 791, and RFC 793.
It was originally supported by the government of the United States,
and since 1993 it has been operating under the Internet Society as an
international non-profit organization.

The membership is free and there are no formal requirements as the
participants are all volunteers. The participation is done via mailing
lists. Optionally, the members may join the meetings in person which
are organized three times a year: in March, July, and November with
locations rotating between America, Europe, and Asia.

While the IETF focuses on shorter term engineering issues and
making standards, its sister organization the Internet Research Task
Force (IRTF) works on more research oriented questions with regard to
the internet, focusing mainly on protocols, architecture and new appli-
cations. In addition to the chairpersons, the governing body of the IETF

Ðrespectively IRTFÐ is the Internet Engineering Steering Group (IESG),
respectively Internet Research Steering Group (IRSG).

Both the IETF and IRTF are organized into a large number of Working
Groups (WG) ÐResearch Groups (RG) for the IRTFÐ which are engaged
on small focus point. For example, the working group Dynamic Host
Configuration (dhc) is responsible for the protocol that assigns your
IP address when connecting to a network. Similarly, the Transport
Layer Security (tls) working group is responsible for 50 RFCs and has
14 active drafts at the time of this writing. Upon completion of their
intended work on their topic, working groups are intended to disband.

249

250 the ietf-irtf standardization process

Each working group is under the hood of a chairpersons (or multiple
co-chairs) and a charter that describes its goal. While online communi-
cations and decisions are handled by email, in-person meetings use
rough consensus to assert the interest of the group on a topic. Rather
than using show of hands which easily identifies a person with their
opinion, the process makes use of humming: a person will hum if
they agree with the proposition. The chair of the session will then
determine if a consensus is reached or not. This practice is described
in more detail in RFC 2418 and in RFC 7282.

The working group of our interest is part of the IRTF: the Crypto
Forum Research Group (CFRG). While most Working Group (WG)
disband once their task is completed, this one is focused on a broader
theme and aims to cover things worth standardizing that do not need
to spin up work groups.

The goal of CFRG is to allow discussions and reviews about crypto-
graphic mechanisms. It mainly focuses on network security and their
use in the IETF. In the end, CFRG intends to provide informational
documents to help engineers use cryptography.

9.2 writing an rfc and the standardization process

Originally aimed at communications between researchers and encour-
aging discussions, the goal of a RFC shifted to propose standards
by formalizing terms, giving guidelines, describing the best current
practices, but also introducing new protocols and implementation
advises.

For historical reasons, RFCs are presented in a 72-character wide
text, however their writing is now done in XML and makes use of the
xml2rfc1 software to take care of the formatting. This change shifted
a large part of the responsibility of formality and structure of the
document from the reviewer and RFC editor to the authors, making it
easier to work on for everyone.

The IETF also published the guidelines RFC 2360 and RFC 7322 to
help authors getting used to the process of publication. Furthermore,
RFC 2119 defines common keywords such as ªshouldº, ªmayº, ªmustº,
and others to unify the requirement level across internet drafts while
its update RFC 8174 aims to clarify some of the ambiguity.

While using a version control system is always advised, the recent
RFC 8874 and RFC 8875 encourage the use of GitHub over GitLab
or BitBucket due the large community of contributors available on
the first. Additionally, the ease of enabling Continuous Integration
(CI) and the ability to use GitHub pages to provide a preview of the
compiled document strengthen that choice. To simplify the set up

1 https://xml2rfc.tools.ietf.org/

https://xml2rfc.tools.ietf.org/

9.2 writing an rfc and the standardization process 251

process, Thomson proposes a stub repository2 providing compilation
scripts and a pre-filled skeleton in XML for an RFC.

Drafts are submitted to the datatracker3, this allows more visibility
for someone casually following the conversation on the mailing list.
Moreover, the philosophy is ªversion numbers are freeº, meaning that
it is encouraged to update a draft quite often rather than having a low
version number but with a large volume of modifications. That way
readers get access to the updated version more easily.

The lifetime of a draft is six months. If not updated by then,
it will be considered as expired. For this reason it is not unusual
to see authors apply minor modifications and resubmit the docu-
ment in order to prolong its lifetime as illustrated for example by
draft-moskowitz-ecdsa-pki4.

publication of cfrg documents . The IRTF publication stream
is described in RFC 5743, however the document glances briefly over
the details of the Research Group (RG) part. In the following, we outline
the process of CFRG.

1. Alice writes a candidate document draft-Alice-Title-00 and
submits it to the datatracker. At this stage it is called a ªpersonal
draftº.

2. Alice continues to work on her draft and updates it
multiple times; as a result the version number increases:
draft-Alice-Title-42.

3. Alice contacts the chairs of the WG and asks for a time slot to
present her draft at the CFRG session during the next IETF/IRTF

meeting.

4. Other CFRG participants join the discussion on the mailing list
and propose modification to the draft.

5. Alice modifies her draft with respect to the feedback she got and
updates it as draft-Alice-Title-43.

6. Alice contacts the chairs of the RG to ask for a time slot to discuss
her improvements at the next group meeting.

7. Alice requests the chairs of the RG to make an adoption call.

8. The chairs start a two-week call during which CFRG participants
are asked to show their support for the draft.

9. Upon acceptance, the chairs change the status of the draft
from personal to RG item. As a result the draft name

2 https://github.com/martinthomson/i-d-template

3 https://datatracker.ietf.org/submit/

4 https://datatracker.ietf.org/doc/draft-moskowitz-ecdsa-pki/

https://github.com/martinthomson/i-d-template
https://datatracker.ietf.org/submit/
https://datatracker.ietf.org/doc/draft-moskowitz-ecdsa-pki/

252 the ietf-irtf standardization process

changes to draft-irtf-cfrg-Title-00. At that point Al-
ice is invited to join the draft repository on Github at
github.com/cfrg/draft-irtf-cfrg-Title. Users can propose
changes to the draft directly by making pull-requests and open-
ing issues on the repository.

Alice is then responsible for providing to the mailing list sum-
maries of the communications happening on the repository. This
is to ensure that nobody from the group is being left out for not
using GitHub.

Similarly, as while working on a personal draft, the version num-
ber is incremented at each update: draft-irtf-cfrg-Title-57.

10. Once the document is stable, Alice requests that the chairs of
the RG proceed forward. They ask feedback from the ªCrypto
Review Panelº which are responsible for the correctness and
quality of the document.

11. After modification of the draft with respect to the feedback from
the Review Panel, Alice asks the chairs for a second call which
upon consensus leads to the publication of the subsequent steps
described in RFC 5743, namely the IRSG review and approval, the
IESG review and finally the publication by the RFC Editor.

timeline of the kangarootwelve draft. We briefly review
in Table 9.1 the standardization efforts for the KangarooTwelve func-
tion presented in Chapter 8.

As illustrated by this record, we observe that the creation of an
internet standard document over a well cryptanalyzed function is a
long process. Additionally, it is good to keep in mind that due to
the nature of how decisions by consensus are made, a low number
of engagement implies that the other members agree with the draft.
Indeed, people disagreeing with the document are expected to speak
up or contact the chairs directly.

9.3 rfc references

In the following, we reference the RFC mentioned in the previous sec-
tions.

RFC 675 [CDS74]: specification of internet transmission

control program

RFC 791 [Age81a]: internet protocol

RFC 793 [Age81b]: transmission control protocol

RFC 2014 [WP96]: irtf research group guidelines and pro-
cedures

RFC 2119 [Bra97]: key words for use in rfcs to indicate re-
quirement levels

https://tools.ietf.org/html/rfc675
https://tools.ietf.org/html/rfc675
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2014
https://tools.ietf.org/html/rfc2014
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

9.3 rfc references 253

Date Event

August 10th, 2016 Original publication on eprint.iacr.org

June 14th, 2017 draft-viguier-kangarootwelve-00

July 18th, 2017 Presentation at the 99th IETF meeting.

December 12th, 2017 draft-viguier-kangarootwelve-01

March 19th, 2018 draft-viguier-kangarootwelve-02

March 19th, 2018 Presentation at the 101st IETF meeting.

July 3rd, 2018 Publication at ACNS 2018.

July 17th, 2018 Presentation at the 102st IETF meeting.

September 19th, 2018 draft-viguier-kangarootwelve-03

February 7th, 2019 draft-viguier-kangarootwelve-04

February 13th, 2019 Beginning of call for adoption by the RG.

March 13th, 2019 Draft adopted by the RG.

August 6th, 2019 draft-irtf-cfrg-kangarootwelve-00

January 24th, 2020 draft-irtf-cfrg-kangarootwelve-01

March 12th, 2020 draft-irtf-cfrg-kangarootwelve-02

September 1st, 2020 draft-irtf-cfrg-kangarootwelve-03

September 21st, 2020 draft-irtf-cfrg-kangarootwelve-04

October 27th, 2020 Beginning of last adoption call as an RFC.

November 11st, 2020 Presentation at FSE 2020 rump session.

February 19st, 2021 draft-irtf-cfrg-kangarootwelve-05

Table 9.1: Timeline of the KangarooTwelve Internet-Draft.

RFC 2360 [Rfca]: guide for internet standards writers

RFC 2418 [Rfcb]: ietf working group guidelines and proce-
dures

RFC 5743 [Fal09]: definition of an internet research task

force (irtf) document stream

RFC 7282 [Res14]: on consensus and humming in the ietf

RFC 7322 [FG14]: rfc style guide

RFC 7776 [RF16]: ietf anti-harassment procedures

RFC 8174 [Lei17]: ambiguity of uppercase vs lowercase in

rfc 2119 key words

RFC 8729 [Rfcc]: the rfc series and rfc editor

RFC 8874 [TS20]: working group github usage guidance

RFC 8875 [CH20]: working group github administration

https://tools.ietf.org/html/rfc2360
https://tools.ietf.org/html/rfc2418
https://tools.ietf.org/html/rfc2418
https://tools.ietf.org/html/rfc5743
https://tools.ietf.org/html/rfc5743
https://tools.ietf.org/html/rfc7282
https://tools.ietf.org/html/rfc7322
https://tools.ietf.org/html/rfc7776
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8729
https://tools.ietf.org/html/rfc8874
https://tools.ietf.org/html/rfc8875

Part V

A P P E N D I X

B I B L I O G R A P H Y

[ARM] ARM corporation. ARM Architecture Reference Manual
ARMv8, for ARMv8-A architecture profile. document ARM
DDI 0487C.a (ID121917), http://www.arm.com/ (cited on
page 246).

[Age81a] Defense Advanced Research Projects Agency. RFC 791

± INTERNET PROTOCOL. https://datatracker.ietf.
org/doc/html/rfc791. Sept. 1981 (cited on page 252).

[Age81b] Defense Advanced Research Projects Agency. RFC 793

± TRANSMISSION CONTROL PROTOCOL. https : / /

datatracker.ietf.org/doc/html/rfc793. Sept. 1981

(cited on page 252).

[AlF+13] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G.
Paterson, Bertram Poettering, and Jacob C. N. Schuldt.
ªOn the Security of RC4 in TLS.º In: USENIX Secu-
rity Symposium 2013. https : / / www . usenix . org /

conference/usenixsecurity13/technical- sessions/

paper/alFardan. USENIX Association, 2013, pp. 305±320

(cited on pages 162, 170).

[Alk+16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and
Peter Schwabe. ªPost-Quantum Key Exchange: A New
Hope.º In: Proceedings of the 25th USENIX Conference on
Security Symposium. SEC’16. https://www.usenix.org/
system/files/conference/usenixsecurity16/sec16_

paper _ alkim . pdf. USA: USENIX Association, 2016,
pp. 327±343 (cited on page 133).

[Alk+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben
Niederhagen, and Richard Petri. ªISA Extensions for Fi-
nite Field Arithmetic: Accelerating Kyber and NewHope
on RISC-V.º In: IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2020.3 (June 2020). https://
tches.iacr.org/index.php/TCHES/article/view/8589,
pp. 219±242 (cited on page 115).

[Alm+16] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
François Dupressoir, and Michael Emmi. ªVerifying
Constant-Time Implementations.º In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’17. https://www.usenix.org/
system/files/conference/usenixsecurity16/sec16_

paper_almeida.pdf. Association for Computing Machin-
ery, 2016, pp. 53±70 (cited on page 183).

257

http://www.arm.com/
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf

258 bibliography

[App11] Andrew W. Appel. ªVerified Software Toolchain.º In: Pro-
gramming Languages and Systems. Ed. by Gilles Barthe.
Vol. 6602. Lecture Notes in Computer Science (LNCS).
https://doi.org/10.1007/978- 3- 642- 19718- 5_1.
Berlin, Heidelberg: Springer, 2011, pp. 1±17 (cited on
page 50).

[App12] Andrew W. Appel. ªVerified Software Toolchain.º In:
NASA Formal Methods - 4th International Symposium, NFM
2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings. Ed. by
Alwyn Goodloe and Suzette Person. Vol. 7226. Lecture
Notes in Computer Science (LNCS). https://doi.org/
10.1007/978- 3- 642- 28891- 3_2. Springer, 2012, p. 2

(cited on page 181).

[App15] Andrew W. Appel. ªVerification of a Cryptographic Prim-
itive: SHA-256.º In: ACM Transactions on Programming
Languages and Systems 37.2 (2015). http://doi.acm.org/
10.1145/2701415, 7:1±7:31 (cited on pages 184, 213).

[App+14] Andrew W. Appel, Robert Dockins, Aquinas Hobor,
Lennart Beringer, Josiah Dodds, Gordon Stewart, San-
drine Blazy, and Xavier Leroy. Program Logics for Certified
Compilers. https://dl.acm.org/doi/book/10.5555/
2670099. USA: Cambridge University Press, 2014 (cited
on page 50).

[App21] Andrew Appel. [Coq-Club] Proof automation for large terms?
Posting to Coq-club mailing list. https://sympa.inria.
fr/sympa/arc/coq-club/2021-02/msg00023.html. Feb.
2021 (cited on page 199).

[Asc] Ascon C repository on GitHub. https : / / github . com /

ascon/ascon-c (cited on page 124).

[AR16] Tomer Ashur and Vincent Rijmen. ªOn Linear Hulls and
Trails.º In: Progress in Cryptology ± INDOCRYPT 2016.
Ed. by Orr Dunkelman and Somitra Kumar Sanadhya.
Vol. 10095. Lecture Notes in Computer Science (LNCS).
https://doi.org/10.1007/978- 3- 319- 49890- 4_15,
see also https://eprint.iacr.org/2016/088. Springer,
2016, pp. 269±286 (cited on page 152).

[AK16] Gilles Van Assche and Ronny Van Keer. Structuring and
optimizing Keccak software. http://ccccspeed.win.tue.
nl/papers/KeccakSoftware.pdf. 2016 (cited on page 91).

[Aum+08] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and
Raphael C.-W. Phan. SHA-3 proposal BLAKE. Submission
to NIST. http://131002.net/blake/blake.pdf. 2008

(cited on page 244).

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
http://doi.acm.org/10.1145/2701415
http://doi.acm.org/10.1145/2701415
https://dl.acm.org/doi/book/10.5555/2670099
https://dl.acm.org/doi/book/10.5555/2670099
https://sympa.inria.fr/sympa/arc/coq-club/2021-02/msg00023.html
https://sympa.inria.fr/sympa/arc/coq-club/2021-02/msg00023.html
https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
https://doi.org/10.1007/978-3-319-49890-4_15
https://eprint.iacr.org/2016/088
http://ccccspeed.win.tue.nl/papers/KeccakSoftware.pdf
http://ccccspeed.win.tue.nl/papers/KeccakSoftware.pdf
http://131002.net/blake/blake.pdf

bibliography 259

[AJN14a] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel
Neves. ªAnalysis of NORX: Investigating Differential and
Rotational Properties.º In: Progress in Cryptology ± LATIN-
CRYPT 2014. Ed. by Diego F. Aranha and Alfred Menezes.
Vol. 8895. Lecture Notes in Computer Science (LNCS).
https://eprint.iacr.org/2014/317.pdf. Springer,
2014, pp. 306±324 (cited on pages 84, 86).

[AJN14b] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel
Neves. ªNORX: Parallel and Scalable AEAD.º In: Com-
puter Security - ESORICS 2014 - 19th European Symposium
on Research in Computer Security, Wroclaw, Poland, Septem-
ber 7-11, 2014. Proceedings, Part II. Ed. by Miroslaw Kuty-
lowski and Jaideep Vaidya. Vol. 8713. Lecture Notes in
Computer Science (LNCS). https://doi.org/10.1007/
978-3-319-11212-1_2. Springer, 2014, pp. 19±36 (cited
on page 76).

[AKM12] Jean-Philippe Aumasson, Simon Knellwolf, and Willi
Meier. ªHeavy Quark for secure AEAD.º In: DIAC
2012: Directions in Authenticated Ciphers. https://www.
aumasson.jp/data/papers/AKM12.pdf. 2012 (cited on
page 77).

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum dis-
tinguishers for reduced Keccak-f and for the core functions of
Luffa and Hamsi. Available online. http://131002.net/
data/papers/AM09.pdf. 2009 (cited on page 239).

[Aum+14] Jean-Philippe Aumasson, Willi Meier, Raphael C.-W.
Phan, and Luca Henzen. The Hash Function BLAKE. https:
//doi.org/10.1007/978-3-662-44757-4. 2014 (cited on
page 78).

[Aum+13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. ªBLAKE2: Simpler,
Smaller, Fast as MD5.º In: Applied Cryptography and Net-
work Security: 11th International Conference, ACNS 2013,
Banff, AB, Canada, June 25-28, 2013. Proceedings. Ed. by
Michael Jacobson, Michael Locasto, Payman Mohassel,
and Reihaneh Safavi-Naini. Lecture Notes in Computer
Science (LNCS). https://doi.org/10.1007/978- 3-
642-38980-1_8. Springer, 2013, pp. 119±135 (cited on
page 244).

[Bak+20] Anubhab Baksi, Jakub Breier, Xiaoyang Dong, and Chen
Yi. ªMachine Learning Assisted Differential Distinguish-
ers For Lightweight Ciphers.º In: IACR Cryptology ePrint
Archive 2020 (2020). https://eprint.iacr.org/2020/571,
p. 571 (cited on page 100).

https://eprint.iacr.org/2014/317.pdf
https://doi.org/10.1007/978-3-319-11212-1_2
https://doi.org/10.1007/978-3-319-11212-1_2
https://www.aumasson.jp/data/papers/AKM12.pdf
https://www.aumasson.jp/data/papers/AKM12.pdf
http://131002.net/data/papers/AM09.pdf
http://131002.net/data/papers/AM09.pdf
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-642-38980-1_8
https://eprint.iacr.org/2020/571

260 bibliography

[Bal+12] Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoit
Gérard, Zheng Gong, Tim Güneysu, Stefan Heyse,
Stéphanie Kerckhof, François Koeune, Thomas Plos,
Thomas Pöppelmann, Francesco Regazzoni, François-
Xavier Standaert, Gilles Van Assche, Ronny Van Keer,
Loïc van Oldeneel tot Oldenzeel, and Ingo von Maurich.
Compact Implementation and Performance Evaluation of Hash
Functions in ATtiny Devices. Cryptology ePrint Archive:
Report 2012/507. https://eprint.iacr.org/2012/507/.
2012 (cited on page 90).

[Bar+19] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno
Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. SoK:
Computer-Aided Cryptography. Cryptology ePrint Archive,
Report 2019/1393. https://eprint.iacr.org/2019/
1393. 2019 (cited on page 183).

[BS14] Evmorfia-Iro Bartzia and Pierre-Yves Strub. ªA Formal
Library for Elliptic Curves in the Coq Proof Assistant.º
In: Interactive Theorem Proving. Ed. by Gerwin Klein and
Ruben Gamboa. Vol. 8558. Lecture Notes in Computer
Science (LNCS). https://hal.inria.fr/hal-01102288.
Springer, 2014, pp. 77±92 (cited on pages 182, 201, 214).

[Bei+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos,
Johann Großschädl, Léo Perrin, Aleksei Udovenko, Ves-
selin Velichkov, and Qingju Wang. ªLightweight AEAD
and Hashing using the Sparkle Permutation Family.º
In: IACR Transactions on Symmetric Cryptology 2020.S1

(June 2020). https://tosc.iacr.org/index.php/ToSC/
article/view/8627, pp. 208±261 (cited on page 121).

[Bel11] Steven M. Bellovin. ªFrank Miller: Inventor of the One-
Time Pad.º In: Cryptologia 35.3 (July 2011). https://doi.
org/10.1080/01611194.2011.583711, pp. 203±222 (cited
on page 4).

[Ber+15a] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and
Andrew W. Appel. ªVerified Correctness and Security
of OpenSSL HMAC.º In: Proceedings of the 24th USENIX
Security Symposium. https://www.cs.cmu.edu/~kqy/
resources/verified- hmac.pdf. USENIX Association,
2015, pp. 207±221 (cited on page 184).

[Ber05a] Daniel J. Bernstein. Cache-timing attacks on AES. https:
//cr.yp.to/antiforgery/cachetiming-20050414.pdf.
2005 (cited on page 132).

[Ber05b] Daniel J. Bernstein. ªThe Poly1305-AES Message-
Authentication Code.º In: Fast Software Encryption: 12th
International Workshop, FSE 2005, Paris, France, February 21-
23, 2005, Revised Selected Papers. Ed. by Henri Gilbert and

https://eprint.iacr.org/2012/507/
https://eprint.iacr.org/2019/1393
https://eprint.iacr.org/2019/1393
https://hal.inria.fr/hal-01102288
https://tosc.iacr.org/index.php/ToSC/article/view/8627
https://tosc.iacr.org/index.php/ToSC/article/view/8627
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1080/01611194.2011.583711
https://www.cs.cmu.edu/~kqy/resources/verified-hmac.pdf
https://www.cs.cmu.edu/~kqy/resources/verified-hmac.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

bibliography 261

Helena Handschuh. Vol. 3557. Lecture Notes in Computer
Science (LNCS). https://doi.org/10.1007/11502760_3.
Springer, Feb. 2005, pp. 32±49 (cited on page 25).

[Ber06a] Daniel J. Bernstein. ªCurve25519: new Diffie-Hellman
speed records.º In: Public Key Cryptography ± PKC 2006.
Ed. by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin. Vol. 3958. Lecture Notes in Computer Science
(LNCS). https://cr.yp.to/papers.html#curve25519.
Springer, 2006, pp. 207±228 (cited on pages 5, 12).

[Ber06b] Daniel J. Bernstein. ªCurve25519: new Diffie-Hellman
speed records.º In: Public Key Cryptography ± PKC 2006.
Ed. by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin. Vol. 3958. Lecture Notes in Computer Science
(LNCS). http://cr.yp.to/papers.html#curve25519.
Springer, 2006, pp. 207±228 (cited on pages 181, 182, 184,
210, 214).

[Ber08a] Daniel J. Bernstein. 25519 naming. Posting to the CFRG
mailing list. https://www.ietf.org/mail- archive/
web/cfrg/current/msg04996.html. Aug. 2008 (cited on
pages 181, 185).

[Ber08b] Daniel J. Bernstein. ChaCha, a variant of Salsa20. SASC
2008: The State of the Art of Stream Ciphers. https :

//cr.yp.to/chacha/chacha-20080128.pdf. 2008 (cited
on pages 19, 67).

[Ber08c] Daniel J. Bernstein. ªThe Salsa20 Family of Stream Ci-
phers.º In: New Stream Cipher Designs - The eSTREAM
Finalists. Ed. by Matthew J. B. Robshaw and Olivier Billet.
Vol. 4986. Lecture Notes in Computer Science (LNCS).
https://cr.yp.to/snuffle/salsafamily- 20071225.

pdf. Springer, 2008, pp. 84±97 (cited on page 67).

[Ber+15b] Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen,
Tanja Lange, Peter Schwabe, and Sjaak Smetsers. ªTweet-
NaCl: A crypto library in 100 tweets.º In: Progress in
Cryptology ± LATINCRYPT 2014. Ed. by Diego Aranha
and Alfred Menezes. Vol. 8895. Lecture Notes in Com-
puter Science (LNCS). http://cryptojedi.org/papers/
#tweetnacl. Springer, 2015, pp. 64±83 (cited on page 181).

[Ber+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben
Niederhagen, Joost Rijneveld, and Peter Schwabe. ªThe
SPHINCS+ Signature Framework.º In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’19. https://dl.acm.org/doi/10.
1145/3319535.3363229. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 2129±2146 (cited on
page 133).

https://doi.org/10.1007/11502760_3
https://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/snuffle/salsafamily-20071225.pdf
https://cr.yp.to/snuffle/salsafamily-20071225.pdf
http://cryptojedi.org/papers/#tweetnacl
http://cryptojedi.org/papers/#tweetnacl
https://dl.acm.org/doi/10.1145/3319535.3363229
https://dl.acm.org/doi/10.1145/3319535.3363229

262 bibliography

[Ber+17a] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro
Maat Costa Massolino, Florian Mendel, Kashif Nawaz,
Tobias Schneider, Peter Schwabe, François-Xavier Stan-
daert, Yosuke Todo, and Benoît Viguier. ªGimli : A Cross-
Platform Permutation.º In: Cryptographic Hardware and
Embedded Systems ± CHES 2017. Ed. by Wieland Fischer
and Naofumi Homma. Vol. 10529. Lecture Notes in Com-
puter Science (LNCS). https://doi.org/10.1007/978-
3-319-66787-4_15, see also https://eprint.iacr.org/

2017/630. Springer, 2017, pp. 299±320 (cited on pages 119,
120, 129).

[BL] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT
Benchmarking of Cryptographic Systems. https://bench.cr.
yp.to (cited on pages 91, 245).

[BLS12] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe.
ªThe security impact of a new cryptographic library.º In:
Progress in Cryptology ± LATINCRYPT 2012. Ed. by Alejan-
dro Hevia and Gregory Neven. Vol. 7533. Lecture Notes
in Computer Science (LNCS). http://cryptojedi.org/
papers/#coolnacl. Springer, 2012, pp. 159±176 (cited on
page 181).

[BS08] Daniel J. Bernstein and Peter Schwabe. ªNew AES Soft-
ware Speed Records.º In: Progress in Cryptology - IN-
DOCRYPT 2008. Ed. by Dipanwita Roy Chowdhury, Vin-
cent Rijmen, and Abhijit Das. Lecture Notes in Computer
Science (LNCS). https://www.cryptojedi.org/papers/
aesspeed- 20080926.pdf. Berlin, Heidelberg: Springer,
2008, pp. 322±336 (cited on page 132).

[BS12] Daniel J. Bernstein and Peter Schwabe. ªNEON crypto.º
In: Cryptographic Hardware and Embedded Systems ± CHES
2012. Ed. by Emmanuel Prouff and Patrick Schau-
mont. Vol. 7428. Lecture Notes in Computer Science
(LNCS). https://cryptojedi.org/papers/#neoncrypto.
Springer, 2012, pp. 320±339 (cited on pages 67, 98).

[Ber+07] Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche. ªSponge functions.º In: ECRYPT Hash
Workshop. Vol. 2007. https : / / keccak . team / files /

SpongeFunctions.pdf. 2007 (cited on pages 27, 235).

[Ber+08a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. ªOn the Indifferentiability of the Sponge
Construction.º In: Advances in Cryptology ± EUROCRYPT
2008. Lecture Notes in Computer Science (LNCS). http:
/ / dx . doi . org / 10 . 1007 / 978 - 3 - 540 - 78967 - 3 _ 11.
Springer, 2008, pp. 181±197 (cited on pages 27, 81, 231,
236, 237).

https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_15
https://eprint.iacr.org/2017/630
https://eprint.iacr.org/2017/630
https://bench.cr.yp.to
https://bench.cr.yp.to
http://cryptojedi.org/papers/#coolnacl
http://cryptojedi.org/papers/#coolnacl
https://www.cryptojedi.org/papers/aesspeed-20080926.pdf
https://www.cryptojedi.org/papers/aesspeed-20080926.pdf
https://cryptojedi.org/papers/#neoncrypto
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/files/SpongeFunctions.pdf
http://dx.doi.org/10.1007/978-3-540-78967-3_11
http://dx.doi.org/10.1007/978-3-540-78967-3_11

bibliography 263

[Ber+08b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. Keccak specifications. NIST SHA-3 Submis-
sion. https://keccak.team/files/Keccak-submission-
3.pdf. Oct. 2008 (cited on pages 32, 231).

[Ber+11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. Cryptographic sponge functions. http : / /

sponge.noekeon.org/CSF- 0.1.pdf. Jan. 2011 (cited
on pages 19, 28, 81).

[Ber+11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. ªDuplexing the Sponge: Single-Pass Authen-
ticated Encryption and Other Applications.º In: Selected
Areas in Cryptography - 18th International Workshop, SAC
2011, Toronto, ON, Canada, August 11-12, 2011, Revised
Selected Papers. Ed. by Ali Miri and Serge Vaudenay.
Vol. 7118. Lecture Notes in Computer Science (LNCS).
https://doi.org/10.1007/978- 3- 642- 28496- 0_19.
Springer, 2011, pp. 320±337 (cited on pages 31, 82).

[Ber+11c] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. ªOn the security of the keyed sponge con-
struction.º In: Symmetric Key Encryption Workshop ± SKEW
2011. http://skew2011.mat.dtu.dk/proceedings/On%
20the % 20security % 20of % 20the % 20keyed % 20sponge %

20construction.pdf. 2011 (cited on page 31).

[Ber+11d] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. The Keccak reference. http : / / keccak .

noekeon.org/. Jan. 2011 (cited on page 32).

[Ber+12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. ªPermutation-based encryption, authentica-
tion and authenticated encryption.º In: DIAC 2012 ± Direc-
tions in Authenticated Ciphers. http://www.hyperelliptic.
org/DIAC/slides/PermutationDIAC2012.pdf. July 2012

(cited on page 32).

[Ber+13a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. ªKeccak.º In: Advances in Cryptology ± EURO-
CRYPT 2013. Lecture Notes in Computer Science (LNCS).
http://dx.doi.org/10.1007/978-3-642-38348-9_19,
see also http://keccak.noekeon.org/Keccak-slides-

at-Eurocrypt-May2013.pdf. 2013, pp. 313±314 (cited on
page 67).

[Ber+13b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. ªKeccak.º In: Advances in Cryptology ± EU-
ROCRYPT 2013. Ed. by Thomas Johansson and Phong
Q. Nguyen. Lecture Notes in Computer Science (LNCS).
https://link.springer.com/chapter/10.1007/978-

https://keccak.team/files/Keccak-submission-3.pdf
https://keccak.team/files/Keccak-submission-3.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
https://doi.org/10.1007/978-3-642-28496-0_19
http://skew2011.mat.dtu.dk/proceedings/On%20the%20security%20of%20the%20keyed%20sponge%20construction.pdf
http://skew2011.mat.dtu.dk/proceedings/On%20the%20security%20of%20the%20keyed%20sponge%20construction.pdf
http://skew2011.mat.dtu.dk/proceedings/On%20the%20security%20of%20the%20keyed%20sponge%20construction.pdf
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://www.hyperelliptic.org/DIAC/slides/PermutationDIAC2012.pdf
http://www.hyperelliptic.org/DIAC/slides/PermutationDIAC2012.pdf
http://dx.doi.org/10.1007/978-3-642-38348-9_19
http://keccak.noekeon.org/Keccak-slides-at-Eurocrypt-May2013.pdf
http://keccak.noekeon.org/Keccak-slides-at-Eurocrypt-May2013.pdf
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19

264 bibliography

3-642-38348-9_19. Berlin, Heidelberg: Springer, 2013,
pp. 313±314 (cited on pages 129, 133).

[Ber+14a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. ªSakura: A Flexible Coding for Tree Hash-
ing.º In: ACNS. Lecture Notes in Computer Science
(LNCS). http://dx.doi.org/10.1007/978- 3- 319-
07536 - 5 _ 14. Springer, 2014, pp. 217±234 (cited on
pages 231, 232, 236, 237).

[Ber+14b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. ªSufficient conditions for sound tree and se-
quential hashing modes.º In: International Journal of Infor-
mation Security 13 (2014). http://dx.doi.org/10.1007/
s10207-013-0220-y, pp. 335±353 (cited on pages 236,
237).

[Ber+] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles
Van Assche, and Ronny Van Keer. XKCP-eXtended Keccak
Code Package. https://github.com/XKCP/XKCP (cited on
page 247).

[Ber+13c] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles
Van Assche, and Ronny Van Keer. Keccak implementa-
tion overview. https : / / keccak . team / files / Keccak -

implementation-3.2.pdf. 2013 (cited on pages 129, 133).

[Ber+16] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer. Keccak code package. https:
//github.com/gvanas/KeccakCodePackage. June 2016

(cited on pages 240, 242, 244).

[Ber+17b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer. Keccak third-party crypt-
analysis. https://keccak.team/third_party.html. 2017

(cited on page 231).

[Ber+18] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer. XKCP-extracted code for
KangarooTwelve. https://github.com/XKCP/K12. 2018

(cited on page 247).

[Bey+19] Tim Beyne, Yu Long Chen, Christof Dobraunig, and Bart
Mennink. Elephant v1. https://www.esat.kuleuven.be/
cosic/elephant/. 2019 (cited on page 126).

[Bih04] Eli Biham. Tutorial on Differential Cryptanalysis. http :

/ / www . cs . technion . ac . il / ~cs236506 / 04 / slides /

differentialcrypt-tutor-add.pdf. Feb. 2004 (cited on
page 39).

https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
http://dx.doi.org/10.1007/978-3-319-07536-5_14
http://dx.doi.org/10.1007/978-3-319-07536-5_14
http://dx.doi.org/10.1007/s10207-013-0220-y
http://dx.doi.org/10.1007/s10207-013-0220-y
https://github.com/XKCP/XKCP
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage
https://keccak.team/third_party.html
https://github.com/XKCP/K12
https://www.esat.kuleuven.be/cosic/elephant/
https://www.esat.kuleuven.be/cosic/elephant/
http://www.cs.technion.ac.il/~cs236506/04/slides/differentialcrypt-tutor-add.pdf
http://www.cs.technion.ac.il/~cs236506/04/slides/differentialcrypt-tutor-add.pdf
http://www.cs.technion.ac.il/~cs236506/04/slides/differentialcrypt-tutor-add.pdf

bibliography 265

[Bih05] Eli Biham. Tutorial on Differential Cryptanalysis. http://
www.cs.technion.ac.il/~cs236506/04/slides/crypto-

slides - 19 - dc - tutor . 1x1 . pdf. May 2005 (cited on
page 39).

[BS90] Eli Biham and Adi Shamir. ªDifferential Cryptanalysis
of DES-like Cryptosystems.º In: Advances in Cryptology-
CRYPTO’ 90. Ed. by Alfred J. Menezes and Scott A. Van-
stone. Lecture Notes in Computer Science (LNCS). https:
//link.springer.com/chapter/10.1007/3-540-38424-

3_1. Berlin, Heidelberg: Springer, 1990, pp. 2±21 (cited on
pages 36, 37, 39).

[BS91] Eli Biham and Adi Shamir. ªDifferential cryptanalysis
of DES-like cryptosystems.º In: Journal of CRYPTOL-
OGY. Vol. 4. Lecture Notes in Computer Science (LNCS)
1. https : / / link . springer . com / article / 10 . 1007 /

BF00630563. Springer, 1991, pp. 3±72 (cited on page 36).

[BS92] Eli Biham and Adi Shamir. ªDifferential Cryptanalysis
of the Full 16-Round DES.º In: Advances in Cryptology ±
CRYPTO ’92. Lecture Notes in Computer Science (LNCS).
https://link.springer.com/chapter/10.1007/3-540-

48071-4_34. Berlin, Heidelberg: Springer, 1992, pp. 487

±496 (cited on pages 36, 39).

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian
Rechberger. ªBiclique Cryptanalysis of the Full AES.º In:
Advances in Cryptology ± ASIACRYPT 2011. Ed. by Dong
Hoon Lee and Xiaoyun Wang. Lecture Notes in Computer
Science (LNCS). https://link.springer.com/chapter/
10.1007/978-3-642-25385-0_19. Berlin, Heidelberg:
Springer, 2011, pp. 344±371 (cited on page 26).

[Bog+11] Andrey Bogdanov, Miroslav Knezevic, Gregor Lean-
der, Deniz Toz, Kerem Varici, and Ingrid Verbauwhede.
ªSPONGENT: The Design Space of Lightweight Cryp-
tographic Hashing.º In: Cryptographic Hardware and Em-
bedded Systems ± CHES 2011. Ed. by Bart Preneel and
Tsuyoshi Takagi. Vol. 6917. Lecture Notes in Computer
Science (LNCS). https://eprint.iacr.org/2011/697.
Springer, 2011, pp. 312±321 (cited on pages 77, 91).

[BM06] Joseph Bonneau and Ilya Mironov. ªCache-Collision Tim-
ing Attacks against AES.º In: CHES’06 ± Proceedings of
the 8th International Conference on Cryptographic Hardware
and Embedded Systems. Lecture Notes in Computer Sci-
ence (LNCS). https://doi.org/10.1007/11894063_16.
Berlin, Heidelberg: Springer, 2006, pp. 201±215 (cited on
page 132).

http://www.cs.technion.ac.il/~cs236506/04/slides/crypto-slides-19-dc-tutor.1x1.pdf
http://www.cs.technion.ac.il/~cs236506/04/slides/crypto-slides-19-dc-tutor.1x1.pdf
http://www.cs.technion.ac.il/~cs236506/04/slides/crypto-slides-19-dc-tutor.1x1.pdf
https://link.springer.com/chapter/10.1007/3-540-38424-3_1
https://link.springer.com/chapter/10.1007/3-540-38424-3_1
https://link.springer.com/chapter/10.1007/3-540-38424-3_1
https://link.springer.com/article/10.1007/BF00630563
https://link.springer.com/article/10.1007/BF00630563
https://link.springer.com/chapter/10.1007/3-540-48071-4_34
https://link.springer.com/chapter/10.1007/3-540-48071-4_34
https://link.springer.com/chapter/10.1007/978-3-642-25385-0_19
https://link.springer.com/chapter/10.1007/978-3-642-25385-0_19
https://eprint.iacr.org/2011/697
https://doi.org/10.1007/11894063_16

266 bibliography

[Bor] BoringSSL. https : / / boringssl . googlesource . com/

(cited on page 8).

[Bos+16] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Ananth Raghu-
nathan, and Douglas Stebila. ªFrodo: Take off the Ring!
Practical, Quantum-Secure Key Exchange from LWE.º
In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’16. https:
//dl.acm.org/doi/abs/10.1145/2976749.2978425. New
York, NY, USA: Association for Computing Machinery,
2016, pp. 1006±1018 (cited on page 133).

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Can-
nière. ªHigher-order differential properties of Keccak and
Luffa.º In: Fast Software Encryption 2011. Lecture Notes in
Computer Science (LNCS). https://doi.org/10.1007/
978-3-642-21702-9_15, see also https://eprint.iacr.

org/2010/589. Springer, 2011 (cited on page 239).

[Bra97] Scott Bradner. RFC 2119 ± Key words for use in RFCs to
Indicate Requirement Levels. https://datatracker.ietf.
org/doc/html/rfc2119. Mar. 1997 (cited on page 252).

[Bro07a] Luitzen Egbertus Jan Brouwer. ªOn the foundations of
mathematics.º In: Collected works 1 (1907). Translation,
pp. 11±101 (cited on page 44).

[Bro07b] Luitzen Egbertus Jan Brouwer. Over de Grondslagen der
Wiskunde. Ed. by. Amsterdam: Maas & van Suchtelen,
1907 (cited on page 44).

[Bru+12] Billy B. Brumley, Manuel Barbosa, Dan Page, and Fred-
erik Vercauteren. ªPractical Realisation and Elimination
of an ECC-Related Software Bug Attack.º In: Topics in
Cryptology ± CT-RSA 2012. Ed. by Orr Dunkelman. https:
//doi.org/10.1007/978-3- 642-27954-6_11. Berlin,
Heidelberg: Springer, 2012, pp. 171±186 (cited on page 8).

[Bur14] Elie Bursztein. Speeding up and strengthening HTTPS con-
nections for Chrome on Android. https : / / security .

googleblog . com / 2014 / 04 / speeding - up - and -

strengthening-https.html. 2014 (cited on page 67).

[CAE13] CAESAR Committee. CAESAR: Competition for Authenti-
cated Encryption: Security, Applicability, and Robustness. Call
for Submissions. http://competitions.cr.yp.to/caesar-
call.html. 2013 (cited on page 143).

https://boringssl.googlesource.com/
https://dl.acm.org/doi/abs/10.1145/2976749.2978425
https://dl.acm.org/doi/abs/10.1145/2976749.2978425
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/978-3-642-21702-9_15
https://eprint.iacr.org/2010/589
https://eprint.iacr.org/2010/589
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://doi.org/10.1007/978-3-642-27954-6_11
https://doi.org/10.1007/978-3-642-27954-6_11
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html

bibliography 267

[Can+20] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María
Naya-Plasencia, Léo Perrin, Thomas Pornin, and An-
dré Schrottenloher. ªSaturnin: a suite of lightweight
symmetric algorithms for post-quantum security.º In:
IACR Transactions on Symmetric Cryptology 2020.S1 (June
2020). https : / / tosc . iacr . org / index . php / ToSC /

article/view/8621, pp. 160±207 (cited on pages 122,
123).

[Cao+18] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah
Dodds, and Andrew W. Appel. ªVST-Floyd: A Separa-
tion Logic Tool to Verify Correctness of C Programs.º In:
Journal of Automated Reasoning 61.1±4 (June 2018). https:
//doi.org/10.1007/s10817-018-9457-5, pp. 367±422

(cited on pages 50, 190, 196).

[Cau+20] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall,
Dean M. Tullsen, Deian Stefan, Tamara Rezk, and Gilles
Barthe. ªConstant-time foundations for the new spectre
era.º In: Programming Language Design and Implementation
± 2020. https://dl.acm.org/doi/10.1145/3385412.
3385970. Association for Computing Machinery, 2020,
pp. 913±926 (cited on page 182).

[CDS74] Vinton Cerf, Yogen Dalal, and Carl Sunshine. RFC 675 ±
SPECIFICATION OF INTERNET TRANSMISSION CON-
TROL PROGRAM. https://datatracker.ietf.org/doc/
html/rfc675. Dec. 1974 (cited on page 252).

[Cha+18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and
Kan Yasuda. ªBeetle Family of Lightweight and Secure
Authenticated Encryption Ciphers.º In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2018.2
(May 2018). https://tches.iacr.org/index.php/TCHES/
article/view/881, pp. 218±241 (cited on pages 83, 121).

[Che+14] Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter
Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang,
and Shang-Yi Yang. ªVerifying Curve25519 Software.º In:
Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. https://cryptojedi.
org/papers/#verify25519.pdf. Association for Comput-
ing Machinery, 2014, pp. 299±309 (cited on page 184).

[Chl10] Adam Chlipala. ªAn Introduction to Programming and
Proving with Dependent Types in Coq.º In: Journal of
Formalized Reasoning 3(2) (2010). http://adam.chlipala.
net/cpdt/, pp. 1±93 (cited on pages 184, 199).

[CH20] Alissa Cooper and Paul Hoffman. RFC 8875 ± Working
Group GitHub Administration. https://datatracker.ietf.
org/doc/html/rfc8875. Aug. 2020 (cited on page 253).

https://tosc.iacr.org/index.php/ToSC/article/view/8621
https://tosc.iacr.org/index.php/ToSC/article/view/8621
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://dl.acm.org/doi/10.1145/3385412.3385970
https://dl.acm.org/doi/10.1145/3385412.3385970
https://datatracker.ietf.org/doc/html/rfc675
https://datatracker.ietf.org/doc/html/rfc675
https://tches.iacr.org/index.php/TCHES/article/view/881
https://tches.iacr.org/index.php/TCHES/article/view/881
https://cryptojedi.org/papers/#verify25519.pdf
https://cryptojedi.org/papers/#verify25519.pdf
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/
https://datatracker.ietf.org/doc/html/rfc8875
https://datatracker.ietf.org/doc/html/rfc8875

268 bibliography

[CH88] Thierry Coquand and Gérard Huet. ªThe calculus of
constructions.º In: Information and Computation 76.2 (1988).
https://doi.org/10.1016/0890- 5401(88)90005- 3,
pp. 95 ±120 (cited on page 45).

[CS18] Craig Costello and Benjamin Smith. ªMontgomery curves
and their arithmetic: The case of large characteristic
fields.º In: Journal of Cryptographic Engineering 8.3 (2018).
https://eprint.iacr.org/2017/212 (cited on page 186).

[Cru+16] Rafael Cruz, Tiago Reis, Diego F. Aranha, and Harsh
Kupwade Patil. ªLightweight cryptography on ARM.º
In: NIST Lightweight Cryptography Workshop. NIST. http:
//www.africacrypt.com/presentations/lw-arm-speed.

pdf. 2016 (cited on page 115).

[Dae95] Joan Daemen. ªCipher and hash function design, strate-
gies based on linear and differential cryptanalysis, PhD
Thesis.º https : / / cs . ru . nl / ~joan / papers / JDA _

Thesis_1995.pdf. PhD thesis. K.U.Leuven, 1995 (cited on
pages 37, 148, 149).

[Dae+18a] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny
Van Keer. ªThe design of Xoodoo and Xoofff.º In: IACR
Transactions on Symmetric Cryptology 2018.4 (Dec. 2018).
https://tosc.iacr.org/index.php/ToSC/article/

view/7359, pp. 1±38 (cited on page 129).

[Dae+18b] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer. Xoodoo cookbook. Cryptology
ePrint Archive, Report 2018/767. https://eprint.iacr.
org/2018/767. 2018 (cited on page 129).

[Dae+20] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles
Van Assche, and Ronny Van Keer. ªXoodyak, a light-
weight cryptographic scheme.º In: IACR Transactions on
Symmetric Cryptology 2020.S1 (June 2020). https://tosc.
iacr.org/index.php/ToSC/article/view/8618, pp. 60±
87 (cited on page 129).

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. ªFull-
State Keyed Duplex with Built-In Multi-user Support.º
In: Advances in Cryptology ± ASIACRYPT 2017. Ed. by
Tsuyoshi Takagi and Thomas Peyrin. Lecture Notes in
Computer Science (LNCS). https://doi.org/10.1007/
978 - 3 - 319 - 70697 - 9 _ 21, see also https : / / eprint .

iacr.org/2017/498. Springer, 2017, pp. 606±637 (cited
on page 32).

https://doi.org/10.1016/0890-5401(88)90005-3
https://eprint.iacr.org/2017/212
http://www.africacrypt.com/presentations/lw-arm-speed.pdf
http://www.africacrypt.com/presentations/lw-arm-speed.pdf
http://www.africacrypt.com/presentations/lw-arm-speed.pdf
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://tosc.iacr.org/index.php/ToSC/article/view/7359
https://tosc.iacr.org/index.php/ToSC/article/view/7359
https://eprint.iacr.org/2018/767
https://eprint.iacr.org/2018/767
https://tosc.iacr.org/index.php/ToSC/article/view/8618
https://tosc.iacr.org/index.php/ToSC/article/view/8618
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://eprint.iacr.org/2017/498
https://eprint.iacr.org/2017/498

bibliography 269

[DR02] Joan Daemen and Vincent Rijmen. ªThe Design of Rijn-
dael: AES - The Advanced Encryption Standard.º In: Infor-
mation Security and Cryptography. https://www.springer.
com/gp/book/9783540425809. Springer, 2002 (cited on
pages 5, 20, 132).

[DH76] Whitfield Diffie and Martin Hellman. ªNew Directions
in Cryptography.º In: IEEE Transactions on Information
Theory 22.6 (Nov. 1976). https://doi.org/10.1109/TIT.
1976.1055638, pp. 644±654 (cited on page 5).

[Din+16a] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin
Velichkov, Johann Großschädl, and Alex Biryukov. ªDe-
sign Strategies for ARX with Provable Bounds: SPARX
and LAX.º In: Advances in Cryptology ± ASIACRYPT 2016.
Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031.
Lecture Notes in Computer Science (LNCS). https://
eprint.iacr.org/2016/984.pdf. Springer, 2016, pp. 484±
513 (cited on page 79).

[Din+16b] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin
Velichkov, Johann Großschädl, and Alex Biryukov. ªDe-
sign Strategies for ARX with Provable Bounds: Sparx and
LAX.º In: Advances in Cryptology ± ASIACRYPT 2016. Ed.
by Jung Hee Cheon and Tsuyoshi Takagi. Lecture Notes in
Computer Science (LNCS). https://link.springer.com/
chapter/10.1007/978-3-662-53887-6_18. Berlin, Hei-
delberg: Springer, 2016, pp. 484±513 (cited on page 121).

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. ªCollision
Attacks on Up to 5 Rounds of SHA-3 Using Generalized
Internal Differentials.º In: Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers. Lecture Notes in Computer
Science (LNCS). http://dx.doi.org/10.1007/978-3-
662-43933-3_12. Springer, 2013, pp. 219±240 (cited on
page 231).

[DDS14] Itai Dinur, Orr Dunkelman, and Adi Shamir. ªImproved
Practical Attacks on Round-Reduced Keccak.º In: Journal
of Cryptology. Vol. 27. Lecture Notes in Computer Science
(LNCS) 2. http://dx.doi.org/10.1007/s00145-012-
9142-5. Springer, 2014, pp. 183±209 (cited on page 231).

[Din+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian
Srebrny, and Michal Straus. ªCube Attacks and Cube-
Attack-Like Cryptanalysis on the Round-Reduced Keccak
Sponge Function.º In: Advances in Cryptology - EURO-
CRYPT 2015. Lecture Notes in Computer Science (LNCS).
http://dx.doi.org/10.1007/978-3-662-46800-5_28.
Springer, 2015, pp. 733±761 (cited on page 239).

https://www.springer.com/gp/book/9783540425809
https://www.springer.com/gp/book/9783540425809
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://eprint.iacr.org/2016/984.pdf
https://eprint.iacr.org/2016/984.pdf
https://link.springer.com/chapter/10.1007/978-3-662-53887-6_18
https://link.springer.com/chapter/10.1007/978-3-662-53887-6_18
http://dx.doi.org/10.1007/978-3-662-43933-3_12
http://dx.doi.org/10.1007/978-3-662-43933-3_12
http://dx.doi.org/10.1007/s00145-012-9142-5
http://dx.doi.org/10.1007/s00145-012-9142-5
http://dx.doi.org/10.1007/978-3-662-46800-5_28

270 bibliography

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian
Mendel. ªAnalysis of SHA-512/224 and SHA-512/256.º
In: Advances in Cryptology - ASIACRYPT. Lecture Notes in
Computer Science (LNCS). https://doi.org/10.1007/
978- 3- 662- 48800- 3_25. Springer, 2015, pp. 612±630

(cited on page 239).

[Dob+16a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel,
and Martin Schläffer. Ascon v1. 2. https://csrc.nist.
gov/CSRC/media/Projects/lightweight-cryptography/

documents / round - 2 / spec - doc - rnd2 / ascon - spec -

round2.pdf. 2016 (cited on page 124).

[Dob+16b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel,
and Martin Schläffer. Ascon v1.2. Submission to the CAE-
SAR competition: https://competitions.cr.yp.to/
round3/asconv12.pdf. http://ascon.iaik.tugraz.at.
2016 (cited on pages 75, 91).

[DR11] Thai Duong and Juliano Rizzo. Here Come The ⊕ Ninjas.
Ekoparty. https://nerdoholic.org/uploads/dergln/
beast_part2/ssl_jun21.pdf. 2011 (cited on page 162).

[Dwi+16] Ashutosh Dhar Dwivedi, Miloš Klouček, Pawel Moraw-
iecki, Ivica NikoliÂc, Josef Pieprzyk, and Sebastian Wójtow-
icz. SAT-based Cryptanalysis of Authenticated Ciphers from
the CAESAR Competition. Cryptology ePrint Archive, Re-
port 2016/1053. https://eprint.iacr.org/2016/1053.
2016 (cited on page 144).

[DMW17] Ashutosh Dhar Dwivedi, Pawel Morawiecki, and Se-
bastian Wójtowicz. ªDifferential and Rotational Crypt-
analysis of Round-reduced MORUS.º In: E-Business
and Telecommunications ± ICETE/SECRYPT 2017. Ed. by
Pierangela Samarati, Mohammad S. Obaidat, and Enrique
Cabello. https://doi.org/10.5220/0006411502750284.
SciTePress, 2017, pp. 275±284 (cited on page 144).

[Dwo15] Morris J. Dworkin. FIPS 202: SHA-3 standard: Permutation-
Based Hash and Extendable-Output Functions. Tech. rep.
https://doi.org/10.6028/NIST.FIPS.202. National
Institute of Standards and Technology, 2015 (cited on
page 133).

[Erb17] Andres Erbsen. ªCrafting certified elliptic curve cryptog-
raphy implementations in Coq.º http://adam.chlipala.

net / theses / andreser _ meng . pdf. MA thesis. Mas-
sachusetts Institute of Technology, 2017 (cited on pages 8,
184).

https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
http://ascon.iaik.tugraz.at
https://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
https://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
https://eprint.iacr.org/2016/1053
https://doi.org/10.5220/0006411502750284
https://doi.org/10.6028/NIST.FIPS.202
http://adam.chlipala.net/theses/andreser_meng.pdf
http://adam.chlipala.net/theses/andreser_meng.pdf

bibliography 271

[Erb+16] Andres Erbsen, Jade Philipoom, Jason Gross, Rober Sloan,
and Adam Chlipala. Systematic Synthesis of Elliptic Curve
Cryptography Implementations. https://people.csail.
mit.edu/jgross/personal-website/papers/2017-fiat-

crypto- pldi- draft.pdf. 2016 (cited on pages 8, 184,
214).

[Erb+19] Andres Erbsen, Jade Philipoom, Jason Gross, Robert
Sloan, and Adam Chlipala. ªSimple High-Level Code
For Cryptographic Arithmetic ± With Proofs, Without
Compromises.º In: 2019 IEEE Symposium on Security and
Privacy. https : / / people . csail . mit . edu / jgross /

personal- website/papers/2019- fiat- crypto- ieee-

sp.pdf. 2019, pp. 73±90 (cited on pages 8, 184).

[Fal09] Aaron Falk. RFC 5743 ± Definition of an Internet Research
Task Force (IRTF) Document Stream. https://datatracker.
ietf . org / doc / html / rfc5743. Dec. 2009 (cited on
page 253).

[Fei73] Horst Feistel. ªCryptography and data security.º In: Sci-
entific american 228.5 (1973), pp. 15±23 (cited on page 4).

[Fer+09] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whit-
ing, Mihir Bellare, Tadayoshi Kohno, Jon Callas, and Jesse
Walker. The Skein Hash Function Family. Submission to
NIST (Round 2). http://www.skein-hash.info/sites/
default/files/skein1.2.pdf. 2009 (cited on page 244).

[FG14] Heather Flanagan and Sandy Ginoza. RFC 7322 ± RFC
Style Guide. https://datatracker.ietf.org/doc/html/
rfc7322. Sept. 2014 (cited on page 253).

[Fló+20] Antonio Flórez-Gutiérrez, Gaëtan Leurent, María Naya-
Plasencia, Léo Perrin, André Schrottenloher, and Ferdi-
nand Sibleyras. ªNew Results on Gimli: Full-Permutation
Distinguishers and Improved Collisions.º In: Advances in
Cryptology - ASIACRYPT 2020 - 26th International Confer-
ence on the Theory and Application of Cryptology and Infor-
mation Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part I. Ed. by Shiho Moriai and Huaxiong
Wang. Vol. 12491. Lecture Notes in Computer Science
(LNCS). https://doi.org/10.1007/978-3-030-64837-
4_2. Springer, 2020, pp. 33±63 (cited on pages 99, 100).

[Flo67] Robert W. Floyd. ªAssigning meaning to programs.º In:
Program Verification. https://people.eecs.berkeley.
edu/~necula/Papers/FloydMeaning.pdf. 1967 (cited on
page 46).

https://people.csail.mit.edu/jgross/personal-website/papers/2017-fiat-crypto-pldi-draft.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2017-fiat-crypto-pldi-draft.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2017-fiat-crypto-pldi-draft.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf
https://datatracker.ietf.org/doc/html/rfc5743
https://datatracker.ietf.org/doc/html/rfc5743
http://www.skein-hash.info/sites/default/files/skein1.2.pdf
http://www.skein-hash.info/sites/default/files/skein1.2.pdf
https://datatracker.ietf.org/doc/html/rfc7322
https://datatracker.ietf.org/doc/html/rfc7322
https://doi.org/10.1007/978-3-030-64837-4_2
https://doi.org/10.1007/978-3-030-64837-4_2
https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf
https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf

272 bibliography

[Flo93] Robert W. Floyd. ªAssigning Meanings to Programs.º
In: Program Verification: Fundamental Issues in Computer
Science. Ed. by Timothy R. Colburn, James H. Fetzer, and
Terry L. Rankin. https://doi.org/10.1007/978-94-
011-1793-7_4. Dordrecht: Springer Netherlands, 1993,
pp. 65±81 (cited on page 46).

[FLG98] Electronic Frontier Foundation, Mike Loukides, and John
Gilmore. Cracking DES: Secrets of Encryption Research, Wire-
tap Politics and Chip Design. http://cryptome.org/jya/
cracking-des/cracking-des.htm. USA: O’Reilly & As-
sociates, Inc., July 1998 (cited on pages 4, 36).

[FJM14] Pierre-Alain Fouque, Antoine Joux, and Chrysanthi
Mavromati. ªMulti-user Collisions: Applications to Dis-
crete Logarithm, Even-Mansour and PRINCE.º In: Ad-
vances in Cryptology ± ASIACRYPT 2014. Ed. by Palash
Sarkar and Tetsu Iwata. Vol. 8873. Lecture Notes in Com-
puter Science (LNCS). https://doi.org/10.1007/978-
3- 662- 45611- 8_22, see also https://eprint.iacr.

org/2013/761.pdf. Springer, 2014, pp. 420±438 (cited on
page 77).

[FSS20] Tim Fritzmann, Georg Sigl, and Johanna Sepulveda.
RISQ-V: Tightly Coupled RISC-V Accelerators for Post-
Quantum Cryptography. Cryptology ePrint Archive, Re-
port 2020/446. https://eprint.iacr.org/2020/446.
2020 (cited on page 115).

[Gau+11] Praveen Gauravaram, Lars R. Knudsen, Krystian Ma-
tusiewicz, Florian Mendel, Christian Rechberger, Martin
Schläffer, and Sùren S. Thomsen. Grùstl ± a SHA-3 candi-
date. Submission to NIST (round 3). http://www.groestl.
info/Groestl.pdf. 2011 (cited on page 244).

[Gon08] Georges Gonthier. ªFormal proofÐthe four-color theo-
rem.º In: Notices of the AMS 55.11 (2008). https://www.
ams.org/notices/200811/tx081101382p.pdf, pp. 1382±
1393 (cited on page 190).

[GMT16] Georges Gonthier, Assia Mahboubi, and Enrico Tassi.
A Small Scale Reflection Extension for the Coq system. Re-
search Report RR±6455. https://hal.inria.fr/inria-
00258384. Inria Saclay Ile de France, 2016 (cited on
page 199).

[Gro96] Lov K. Grover. ªA Fast Quantum Mechanical Algorithm
for Database Search.º In: Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing. STOC ’96.
https://doi.org/10.1145/237814.237866. New York,
NY, USA: Association for Computing Machinery, 1996,
pp. 212±219 (cited on page 6).

https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
http://cryptome.org/jya/cracking-des/cracking-des.htm
http://cryptome.org/jya/cracking-des/cracking-des.htm
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-662-45611-8_22
https://eprint.iacr.org/2013/761.pdf
https://eprint.iacr.org/2013/761.pdf
https://eprint.iacr.org/2020/446
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf
https://www.ams.org/notices/200811/tx081101382p.pdf
https://www.ams.org/notices/200811/tx081101382p.pdf
https://hal.inria.fr/inria-00258384
https://hal.inria.fr/inria-00258384
https://doi.org/10.1145/237814.237866

bibliography 273

[Gro97] Lov K. Grover. ªQuantum Mechanics Helps in Searching
for a Needle in a Haystack.º In: Physical Review Letters 79.2
(July 1997). http://dx.doi.org/10.1103/PhysRevLett.
79.325, pp. 325±328 (cited on page 6).

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. ªLinear Struc-
tures: Applications to Cryptanalysis of Round-Reduced
Keccak.º In: Advances in Cryptology - ASIACRYPT. Lecture
Notes in Computer Science (LNCS). https://doi.org/
10.1007/978-3-662-53887-6_9. Springer, 2016, pp. 249±
274 (cited on pages 238, 239).

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. ªThe
PHOTON Family of Lightweight Hash Functions.º In:
Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings. Ed. by Phillip Rogaway. Vol. 6841. Lec-
ture Notes in Computer Science (LNCS). https://doi.
org/10.1007/978-3-642-22792-9_13. Springer, 2011,
pp. 222±239 (cited on page 77).

[Ham15] Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryp-
tology ePrint Archive, Report 2015/625. https://eprint.
iacr.org/2015/625. 2015 (cited on page 214).

[Hel02] Martin E. Hellman. ªAn overview of public key cryp-
tography.º In: IEEE Communications Magazine 40.5 (2002).
https://doi.org/10.1109/MCOM.2002.1006971, pp. 42±
49 (cited on page 5).

[Hoa69] Sir Charles Antony Richard Hoare. ªAn Axiomatic Basis
for Computer Programming.º In: Association for Comput-
ing Machinery 12.10 (Oct. 1969). http://doi.acm.org/
10.1145/363235.363259, pp. 576±580 (cited on pages 46,
181).

[How95] William Alvin Howard. ªThe Formulñ-as-Types Notion
of Construction.º In: The Curry-Howard Isomorphism. Ed.
by Philippe De Groote. https : / / www . cs . cmu . edu /

~crary/819-f09/Howard80.pdf. Academia, 1995 (cited
on pages 44, 190).

[Hua+17] Senyang Huang, Xiaoyun Wangand Guangwu Xu, Meiqin
Wang, and Jingyuan Zhao. ªConditional Cube Attack on
Reduced-Round Keccak Sponge Function.º In: Advances
in Cryptology - EUROCRYPT 2017. Lecture Notes in Com-
puter Science (LNCS). https://doi.org/10.1007/978-3-
319-56614-6_9. SV, 2017, pp. 259±288 (cited on page 239).

http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-22792-9_13
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2015/625
https://doi.org/10.1109/MCOM.2002.1006971
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
https://www.cs.cmu.edu/~crary/819-f09/Howard80.pdf
https://www.cs.cmu.edu/~crary/819-f09/Howard80.pdf
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-56614-6_9

274 bibliography

[HRS16] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe.
ªARMed SPHINCS ± Computing a 41KB signature in
16KB of RAM.º In: Public Key Cryptography ± PKC 2016.
Ed. by Giuseppe Persiano and Bo-Yin Yang. Vol. 9614.
Lecture Notes in Computer Science (LNCS). https://
cryptojedi.org/papers/#armedsphincs. Springer, 2016,
pp. 446±470 (cited on page 91).

[HS13] Michael Hutter and Peter Schwabe. ªNaCl on 8-bit
AVR Microcontrollers.º In: Progress in Cryptology ±
AFRICACRYPT 2013. Ed. by Amr Youssef and Abderrah-
mane Nitaj. Vol. 7918. Lecture Notes in Computer Science
(LNCS). https://cryptojedi.org/papers/#avrnacl.
Springer, 2013, pp. 156±172 (cited on page 91).

[IS] Ltd Imperas Software. riscvOVPsim simulator. https://
github.com/riscv/riscv-ovpsim (cited on page 119).

[KEM17] Daniel Kales, Maria Eichlseder, and Florian Mendel. Note
on the Robustness of CAESAR Candidates. IACR Cryptology
ePrint Archive, Report 2017/1137. https://eprint.iacr.
org/2017/1137. 2017 (cited on pages 144, 167).

[KS09] Emilia Käsper and Peter Schwabe. ªFaster and Timing-
Attack Resistant AES-GCM.º In: Cryptographic Hardware
and Embedded Systems ± CHES 2009. Ed. by Christophe
Clavier and Kris Gaj. Lecture Notes in Computer Sci-
ence (LNCS). https://link.springer.com/chapter/
10.1007/978- 3- 642- 04138- 9_1. Berlin, Heidelberg:
Springer, 2009, pp. 1±17 (cited on page 133).

[Ker83] Auguste Kerckhoffs. ªLa cryptographie militaire.º In:
Journal des sciences militaires. Vol. 9. https : / / www .

petitcolas . net / kerckhoffs / index . html. Paris: Li-
brairie militaire de L. Baudoin, 1883, pp. 5±38 (cited on
page 3).

[Kob87] Neal Koblitz. ªElliptic Curve Cryptosystems.º In: Associ-
ation for Computing Machinery 48.177 (Jan. 1987). https:
//doi.org/10.2307/2007884, pp. 203±209 (cited on
page 5).

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. ªObser-
vations on the SIMON Block Cipher Family.º In: Advances
in Cryptology ± CRYPTO 2015. Ed. by Rosario Gennaro
and Matthew Robshaw. Vol. 9215. Lecture Notes in Com-
puter Science (LNCS). https://eprint.iacr.org/2015/
145.pdf. Springer, 2015, pp. 161±185 (cited on pages 84,
86).

https://cryptojedi.org/papers/#armedsphincs
https://cryptojedi.org/papers/#armedsphincs
https://cryptojedi.org/papers/#avrnacl
https://github.com/riscv/riscv-ovpsim
https://github.com/riscv/riscv-ovpsim
https://eprint.iacr.org/2017/1137
https://eprint.iacr.org/2017/1137
https://link.springer.com/chapter/10.1007/978-3-642-04138-9_1
https://link.springer.com/chapter/10.1007/978-3-642-04138-9_1
https://www.petitcolas.net/kerckhoffs/index.html
https://www.petitcolas.net/kerckhoffs/index.html
https://doi.org/10.2307/2007884
https://doi.org/10.2307/2007884
https://eprint.iacr.org/2015/145.pdf
https://eprint.iacr.org/2015/145.pdf

bibliography 275

[Kön08] Robert Könighofer. ªA Fast and Cache-Timing Resistant
Implementation of the AES.º In: Topics in Cryptology ± CT-
RSA 2008. Ed. by Tal Malkin. Lecture Notes in Computer
Science (LNCS). https://link.springer.com/chapter/
10.1007/978-3-540-79263-5_12. Berlin, Heidelberg:
Springer, 2008, pp. 187±202 (cited on page 133).

[KR14] Ted Krovetz and Phillip Rogaway. ªRFC 7253 ± The
OCB Authenticated-Encryption Algorithm.º In: RFC 7253

(2014). https://doi.org/10.17487/RFC7253, pp. 1±19

(cited on page 143).

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. ªMarkov
Ciphers and Differential Cryptanalysis.º In: EURO-
CRYPT’91 ± Proceedings of the 10th Annual International
Conference on Theory and Application of Cryptographic Tech-
niques. Lecture Notes in Computer Science (LNCS) 547.
https://doi.org/10.1007/3-540-46416-6_2. Berlin,
Heidelberg: Springer, 1991, pp. 17±38 (cited on page 38).

[LHT] Adam Langley, Mike Hamburg, and Sean Turner.
RFC 7748 ± Elliptic Curves for Security. https://tools.
ietf.org/html/rfc7748 (cited on pages 5, 12, 181, 185,
187, 190, 192, 193, 214).

[Lan+] Adam Langley, Nikos Mavrogiannopoulos, Joachim
Strombergson, and Simon Josefsson. RFC 7748 ±
ChaCha20-Poly1305 Cipher Suites for Transport Layer Se-
curity (TLS). https://tools.ietf.org/html/rfc7905
(cited on page 67).

[Lei17] Barry Leiba. RFC 8174 ± Ambiguity of Uppercase vs Lower-
case in RFC 2119 Key Words. https://datatracker.ietf.
org/doc/html/rfc8174. May 2017 (cited on page 253).

[Ler09a] Xavier Leroy. ªA formally verified compiler back-end.º
In: Journal of Automated Reasoning. Vol. 43. 4. http://
gallium.inria.fr/~xleroy/publi/compcert-backend.

pdf. Springer, 2009, pp. 363±446 (cited on pages 49, 190).

[Ler09b] Xavier Leroy. ªFormal Verification of a Realistic Com-
piler.º In: Association for Computing Machinery 52.7 (July
2009). https://doi.org/10.1145/1538788.1538814,
pp. 107±115 (cited on page 49).

[LAD20] Tamara Rezk Lesly-Ann Daniel Sébastien Bardin. ªBin-
sec/Rel: Efficient Relational SymbolicExecution for
Constant-Time at Binary-Level.º In: 2020 IEEE Symposium
on Security and Privacy. https://people.csail.mit.edu/
jgross/personal-website/papers/2019-fiat-crypto-

ieee-sp.pdf. 2020, pp. 1021±1038 (cited on page 183).

https://link.springer.com/chapter/10.1007/978-3-540-79263-5_12
https://link.springer.com/chapter/10.1007/978-3-540-79263-5_12
https://doi.org/10.17487/RFC7253
https://doi.org/10.1007/3-540-46416-6_2
https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc7905
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8174
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
https://doi.org/10.1145/1538788.1538814
https://people.csail.mit.edu/jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf

276 bibliography

[LIS12] Ji Li, Takanori Isobe, and Kyoji Shibutani. ªConverting
Meet-In-The-Middle Preimage Attack into Pseudo Col-
lision Attack: Application to SHA-2.º In: Fast Software
Encryption (FSE). Lecture Notes in Computer Science
(LNCS). https://doi.org/10.1007/978-3-642-34047-
5_16. Springer, 2012, pp. 264±286 (cited on page 239).

[LIM19] Fukang Liu, Takanori Isobe, and Willi Meier. ªPreim-
ages and Collisions for Up to 5-Round Gimli-Hash Us-
ing Divide-and-Conquer Methods.º In: IACR Cryptology
ePrint Archive 2019 (2019). https://eprint.iacr.org/
2019/1080, p. 1080 (cited on page 99).

[LIM20a] Fukang Liu, Takanori Isobe, and Willi Meier. ªAutomatic
Verification of Differential Characteristics: Application to
Reduced Gimli.º In: Advances in Cryptology ± CRYPTO
2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part III. Ed. by Daniele Micciancio and
Thomas Ristenpart. Vol. 12172. Lecture Notes in Com-
puter Science (LNCS). https://doi.org/10.1007/978-
3-030-56877-1_8. Springer, 2020, pp. 219±248 (cited on
page 99).

[LIM20b] Fukang Liu, Takanori Isobe, and Willi Meier. ªExploiting
Weak Diffusion of Gimli: A Full-Round Distinguisher and
Reduced-Round Preimage Attacks.º In: IACR Cryptology
ePrint Archive 2020 (2020). https://eprint.iacr.org/
2020/561, p. 561 (cited on page 99).

[Liu19] S. Liu. IoT connected devices worldwide 2030. https://
www . statista . com / statistics / 802690 / worldwide -

connected - devices - by - access - technology/. 2019

(cited on page 6).

[MT21] Assia Mahboubi and Enrico Tassi. Mathematical Compo-
nents. Zenodo, Jan. 2021 (cited on page 210).

[MS01] Itsik Mantin and Adi Shamir. ªA Practical Attack on
Broadcast RC4.º In: Fast Software Encryption ± FSE 2001.
Vol. 2355. Lecture Notes in Computer Science (LNCS).
https://doi.org/10.1007/3-540-45473-X_13. Springer,
2001, pp. 152±164 (cited on page 162).

[Mat93] Mitsuru Matsui. ªLinear Cryptanalysis Method for DES
Cipher.º In: Advances in Cryptology ± EUROCRYPT 1993.
Ed. by Tor Helleseth. Vol. 765. Lecture Notes in Com-
puter Science (LNCS). https://doi.org/10.1007/3-
540-48285-7_33. Springer, 1993, pp. 386±397 (cited on
pages 144, 148, 149, 162).

https://doi.org/10.1007/978-3-642-34047-5_16
https://doi.org/10.1007/978-3-642-34047-5_16
https://eprint.iacr.org/2019/1080
https://eprint.iacr.org/2019/1080
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-030-56877-1_8
https://eprint.iacr.org/2020/561
https://eprint.iacr.org/2020/561
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://doi.org/10.1007/3-540-45473-X_13
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48285-7_33

bibliography 277

[MY92] Mitsuru Matsui and Atsuhiro Yamagishi. ªA New
Method for Known Plaintext Attack of FEAL Cipher.º In:
Advances in Cryptology ± EUROCRYPT 1992. Ed. by Rainer
A. Rueppel. Vol. 658. Lecture Notes in Computer Science
(LNCS). https://doi.org/10.1007/3-540-47555-9_7.
Springer, 1992, pp. 81±91 (cited on page 144).

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein.
ªIndifferentiability, Impossibility Results on Reductions,
and Applications to the Random Oracle Methodology.º
In: Theory of Cryptography - TCC 2004. Ed. by M. Naor. Lec-
ture Notes in Computer Science (LNCS) 2951. Springer,
2004, pp. 21±39 (cited on page 235).

[Meh14] Neel Mehta. Heartbleed ± CVE-2014-0160. https : / /

heartbleed.com/. Apr. 2014 (cited on page 7).

[MNS13] Florian Mendel, Tomislav Nad, and Martin Schläffer.
ªImproving Local Collisions: New Attacks on Reduced
SHA-256.º In: Advances in Cryptology - EUROCRYPT. Lec-
ture Notes in Computer Science (LNCS). Springer, 2013,
pp. 262±278 (cited on page 239).

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. ªSe-
curity of Full-State Keyed Sponge and Duplex: Applica-
tions to Authenticated Encryption.º In: Advances in Cryp-
tology ± ASIACRYPT 2015. Ed. by Tetsu Iwata and Jung
Hee Cheon. Lecture Notes in Computer Science (LNCS).
https://link.springer.com/chapter/10.1007/978-

3-662-48800-3_19. Berlin, Heidelberg: Springer, 2015,
pp. 465±489 (cited on page 32).

[MW18] D. Micciancio and M. Walter. ªOn the Bit Security of
Cryptographic Primitives.º In: Advances in Cryptology ±
EUROCRYPT 2018: 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I. Ed. by
Jesper Buus Nielsen and Vincent Rijmen. Vol. 10820. Lec-
ture Notes in Computer Science (LNCS). https://link.
springer.com/chapter/10.1007/978-3-319-78381-9_1.
Springer, Mar. 2018, pp. 3±28 (cited on page 235).

[MDV15] Aleksandra Mileva, Vesna Dimitrova, and Vesselin
Velichkov. ªAnalysis of the Authenticated Cipher
MORUS (v1).º In: Cryptography and Information Security in
the Balkans ± BalkanCryptSec 2015. Ed. by Enes Pasalic and
Lars R. Knudsen. Vol. 9540. Lecture Notes in Computer
Science (LNCS). https://10.1007/978-3-319-29172-
7_4. Springer, 2015, pp. 45±59 (cited on page 144).

https://doi.org/10.1007/3-540-47555-9_7
https://heartbleed.com/
https://heartbleed.com/
https://link.springer.com/chapter/10.1007/978-3-662-48800-3_19
https://link.springer.com/chapter/10.1007/978-3-662-48800-3_19
https://link.springer.com/chapter/10.1007/978-3-319-78381-9_1
https://link.springer.com/chapter/10.1007/978-3-319-78381-9_1
https://10.1007/978-3-319-29172-7_4
https://10.1007/978-3-319-29172-7_4

278 bibliography

[Mil86] Victor S. Miller. ªUse of Elliptic Curves in Cryptography.º
In: Advances in Cryptology Ð CRYPTO ’85 Proceedings. Ed.
by Hugh C. Williams. Lecture Notes in Computer Science
(LNCS). https://doi.org/10.1007/3-540-39799-X_31.
Berlin, Heidelberg: Springer, 1986, pp. 417±426 (cited on
page 5).

[Min14] Brice Minaud. ªLinear Biases in AEGIS Keystream.º In:
Selected Areas in Cryptography ± SAC 2014. Ed. by Antoine
Joux and Amr M. Youssef. Vol. 8781. Lecture Notes in
Computer Science (LNCS). https://doi.org/10.1007/
978- 3- 319- 13051- 4_18, see also: https://eprint.
iacr.org/2018/292. Springer, 2014, pp. 290±305 (cited
on pages 144, 162).

[Mon87] Peter L. Montgomery. ªSpeeding the Pollard and Elliptic
Curve Methods of Factorization.º In: Mathematics of Com-
putation 48.177 (1987). http://links.jstor.org/sici?
sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-

3, pp. 243±243 (cited on pages 186, 204).

[Mou15] Nicky Mouha. ªThe Design Space of Lightweight Cryp-
tography.º In: NIST Lightweight Cryptography Workshop
2015. https : / / hal . inria . fr / hal - 01241013 / file /

session5-mouha-paper.pdf. Gaithersburg, United States,
July 2015 (cited on page 115).

[Mou+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege,
Dai Watanabe, Bart Preneel, and Ingrid Verbauwhede.
ªChaskey: An Efficient MAC Algorithm for 32-bit Micro-
controllers.º In: Selected Areas in Cryptography ± SAC 2014.
Ed. by Antoine Joux and Amr Youssef. Vol. 8781. Lec-
ture Notes in Computer Science (LNCS). https://doi.
org/10.1007/978-3-319-13051-4_19. Springer, 2014,
pp. 306±323 (cited on pages 67, 91).

[NIS95] NIST. Federal Information Processing Standard 180-1, Secure
Hash Standard. Apr. 1995 (cited on page 244).

[NIS01] NIST. Federal Information Processing Standard 197, Advanced
Encryption Standard (AES). https://doi.org/10.6028/
NIST.FIPS.197. Gaithersburg, MD, USA, Nov. 2001 (cited
on page 5).

[NIS02] NIST. Federal Information Processing Standard 180-2, Secure
Hash Standard. Aug. 2002 (cited on page 244).

[NIS07] NIST. Special Publication 800-38D, Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. https://doi.org/10.6028/NIST.SP.800-38D.
Gaithersburg, MD, USA, Nov. 2007 (cited on page 25).

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-3-319-13051-4_18
https://doi.org/10.1007/978-3-319-13051-4_18
https://eprint.iacr.org/2018/292
https://eprint.iacr.org/2018/292
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
https://hal.inria.fr/hal-01241013/file/session5-mouha-paper.pdf
https://hal.inria.fr/hal-01241013/file/session5-mouha-paper.pdf
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.SP.800-38D

bibliography 279

[NIS15] NIST. Federal Information Processing Standard 202, SHA-3
Standard: Permutation-Based Hash and Extendable-Output
Functions. http://dx.doi.org/10.6028/NIST.FIPS.202.
Gaithersburg, MD, USA, Aug. 2015 (cited on pages 32,
231, 233, 240, 245).

[NIS16] NIST. NIST Special Publication 800-185, SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash.
https://doi.org/10.6028/NIST.SP.800-185. Dec. 2016

(cited on pages 232, 240, 245).

[Nev] Samuel Neves. BLAKE2 AVX2 implementations. https:

//github.com/sneves/blake2-avx2 (cited on page 245).

[Nis+19] Gorkem Nisanci, Remzi Atay, Meltem Kurt Pehlivanoglu,
Elif Bilge Kavun, and Tolga Yalcin. Will the Future Light-
weight Standard be RISC-V Friendly? https://csrc.nist.

gov / CSRC / media / Presentations / will - the - future -

lightweight-standard-be-risc-v-fri/images-media/

session4-yalcin-will-future-lw-standard-be-risc-

v-friendly.pdf. 2019 (cited on page 116).

[Opea] OpenSSL community. OpenSSL ± Cryptography and SS-
L/TLS Toolkit. https://github.com/openssl/openssl
(cited on pages 7, 245).

[Opeb] OpenSSL/Vulnerabilities. OpenSSL ± Cryptography and
SSL/TLS Toolkit. https : / / www . openssl . org / news /

vulnerabilities.html (cited on page 7).

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. ªCache
Attacks and Countermeasures: The Case of AES.º In: Top-
ics in Cryptology ± CT-RSA 2006. Ed. by David Pointcheval.
Lecture Notes in Computer Science (LNCS). https://
www.cs.tau.ac.il/~tromer/papers/cache.pdf. Berlin,
Heidelberg: Springer, 2006, pp. 1±20 (cited on page 132).

[Per14] Ray A. Perlner. Extendable-Output Functions (XOFs). SHA
3 workshop 2014. https://csrc.nist.gov/events/2014/
sha- 3- 2014- workshop. Aug. 2014 (cited on pages 30,
232).

[Phi18] Jade Philipoom. ªCorrect-by-construction finite field arith-
metic in Coq.º http://adam.chlipala.net/theses/

jadep_meng.pdf. MA thesis. Massachusetts Institute of
Technology, 2018 (cited on page 184).

[Pie+18a] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris
Casinghino, Marco Gaboardi, Michael Greenberg, Cǎtǎlin
HriËtcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent
Yorgey. Programming Language Foundations. Software
Foundations series, volume 2. Version 5.5. http://www.

http://dx.doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-185
https://github.com/sneves/blake2-avx2
https://github.com/sneves/blake2-avx2
https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-will-future-lw-standard-be-risc-v-friendly.pdf
https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-will-future-lw-standard-be-risc-v-friendly.pdf
https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-will-future-lw-standard-be-risc-v-friendly.pdf
https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-will-future-lw-standard-be-risc-v-friendly.pdf
https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-will-future-lw-standard-be-risc-v-friendly.pdf
https://github.com/openssl/openssl
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
https://www.cs.tau.ac.il/~tromer/papers/cache.pdf
https://www.cs.tau.ac.il/~tromer/papers/cache.pdf
https://csrc.nist.gov/events/2014/sha-3-2014-workshop
https://csrc.nist.gov/events/2014/sha-3-2014-workshop
http://adam.chlipala.net/theses/jadep_meng.pdf
http://adam.chlipala.net/theses/jadep_meng.pdf
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf

280 bibliography

cis.upenn.edu/~bcpierce/sf. Electronic textbook, May
2018 (cited on page 43).

[Pie+18b] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris
Casinghino, Marco Gaboardi, Michael Greenberg, Cǎtǎlin
HriËtcu, Vilhelm Sjöberg, and Brent Yorgey. Logical Founda-
tions. Software Foundations series, volume 1. Version 5.5.
http://www.cis.upenn.edu/~bcpierce/sf. Electronic
textbook, May 2018 (cited on page 43).

[Poe03] B. Poettering. AVRAES: The AES block cipher on AVR con-
trollers. http://point-at-infinity.org/avraes/. 2003

(cited on page 91).

[Pro+19] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhar-
gavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cedric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph Wintersteiger, and Santiago Zanella-Beguelin.
EverCrypt: A Fast, Verified, Cross-Platform Cryptographic
Provider. Cryptology ePrint Archive, Report 2019/757.
https://eprint.iacr.org/2019/757. 2019 (cited on
page 183).

[Pro+17] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem
Rastogi, Tahina Ramananandro, Peng Wang, Santi-
ago Zanella-Béguelin, Antoine Delignat-Lavaud, Catalin
Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and
Nikhil Swamy. ªVerified Low-Level Programming Em-
bedded in F*.º In: Proceedings of the ACM on Programming
Languages. ICFP 1. http://arxiv.org/abs/1703.00053.
Association for Computing Machinery, 2017, p. 17 (cited
on pages 8, 183, 190).

[Rfca] RFC 2360 ± Guide for Internet Standards Writers. https:
//datatracker.ietf.org/doc/html/rfc2360. June 1998

(cited on page 253).

[Rfcb] RFC 2418 ± IETF Working Group ± Guidelines and Procedures.
https://datatracker.ietf.org/doc/html/rfc2418.
Sept. 1998 (cited on page 253).

[Rfcc] RFC 8729 ± The RFC Series and RFC Editor. https :/ /

datatracker.ietf.org/doc/html/rfc8729. Feb. 2020

(cited on page 253).

[RSD06] Chester Rebeiro, David Selvakumar, and A. S. L. Devi.
ªBitslice Implementation of AES.º In: CANS 2006 ± Cryp-
tology and Network Security. Ed. by David Pointcheval,
Yi Mu, and Kefei Chen. Lecture Notes in Computer Sci-
ence (LNCS). https://link.springer.com/chapter/10.

http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
http://point-at-infinity.org/avraes/
https://eprint.iacr.org/2019/757
http://arxiv.org/abs/1703.00053
https://datatracker.ietf.org/doc/html/rfc2360
https://datatracker.ietf.org/doc/html/rfc2360
https://datatracker.ietf.org/doc/html/rfc2418
https://datatracker.ietf.org/doc/html/rfc8729
https://datatracker.ietf.org/doc/html/rfc8729
https://link.springer.com/chapter/10.1007/11935070_14
https://link.springer.com/chapter/10.1007/11935070_14

bibliography 281

1007/11935070_14. Berlin, Heidelberg: Springer, 2006,
pp. 203±212 (cited on page 133).

[Res14] Paul Resnick. RFC 7282 ± On Consensus and Humming in
the IETF. https://datatracker.ietf.org/doc/html/
rfc7282. June 2014 (cited on page 253).

[RF16] Paul Resnick and Adrian Farrel. RFC 7776 ± IETF Anti-
Harassment Procedures. https://datatracker.ietf.org/
doc/html/rfc7776. Mar. 2016 (cited on page 253).

[Rey02] John C. Reynolds. ªSeparation Logic: A Logic for Shared
Mutable Data Structures.º In: Proceedings 17th Annual
IEEE Symposium on Logic in Computer Science. Vol. 17.
http://www.cs.cmu.edu/~jcr/seplogic.pdf. IEEE,
2002, pp. 55±74 (cited on pages 48, 181).

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas
Shrimpton. ªCareful with Composition: Limitations of
the Indifferentiability Framework.º In: Eurocrypt 2011.
Lecture Notes in Computer Science (LNCS). http://dx.
doi.org/10.1007/978-3-642-20465-4_27. Springer,
2011, pp. 487±506 (cited on page 235).

[Riv92] Ronald L. Rivest. The MD5 message-digest algorithm.
RFC 1321 ± Internet Request for Comments. Apr. 1992

(cited on page 244).

[Riv02] Ronald L. Rivest. Foreword in The Design of Rijndael: AES
- The Advanced Encryption Standard by Joan Daemen and
Vincent Rijmen. Springer, 2002 (cited on page 5).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.
ªA Method for Obtaining Digital Signatures and Public
Key Cryptosystems.º In: Association for Computing Machin-
ery 21.2 (Feb. 1978). https://doi.org/10.1145/359340.
359342, pp. 120±126 (cited on page 5).

[SKC17] Dhiman Saha, Sukhendu Kuila, and Dipanwita Roy
Chowdhury. ªSymSum: Symmetric-Sum Distinguishers
Against Round Reduced SHA3.º In: IACR Transactions on
Symmetric Cryptology 2017.1 (2017). https://doi.org/10.
13154/tosc.v2017.i1.240-258, pp. 240±258 (cited on
page 239).

[Sal+17] Md. Iftekhar Salam, Leonie Simpson, Harry Bartlett, Ed
Dawson, Josef Pieprzyk, and Kenneth Koon-Ho Wong.
ªInvestigating Cube Attacks on the Authenticated En-
cryption Stream Cipher MORUS.º In: IEEE Trustcom/Big-
DataSE/ICESS 2017. https : / / doi . org / 10 . 1109 /

Trustcom / BigDataSE / ICESS . 2017 . 337. IEEE, 2017,
pp. 961±966 (cited on page 144).

https://link.springer.com/chapter/10.1007/11935070_14
https://link.springer.com/chapter/10.1007/11935070_14
https://link.springer.com/chapter/10.1007/11935070_14
https://datatracker.ietf.org/doc/html/rfc7282
https://datatracker.ietf.org/doc/html/rfc7282
https://datatracker.ietf.org/doc/html/rfc7776
https://datatracker.ietf.org/doc/html/rfc7776
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://dx.doi.org/10.1007/978-3-642-20465-4_27
http://dx.doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.13154/tosc.v2017.i1.240-258
https://doi.org/10.13154/tosc.v2017.i1.240-258
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.337
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.337

282 bibliography

[SN16] Niels Samwel and Moritz Neikes. arm-chacha20. https:
//gitlab.science.ru.nl/mneikes/arm-chacha20/tree/

master. 2016 (cited on page 91).

[SY15] Yu Sasaki and Kan Yasuda. ªHow to incorporate asso-
ciated data in sponge-based authenticated encryption.º
In: Topics in Cryptology Ð CT-RSA 2015. Ed. by Kaisa
Nyberg. Lecture Notes in Computer Science (LNCS).
https://link.springer.com/chapter/10.1007/978-

3-319-16715-2_19. Springer, 2015, pp. 353±370 (cited on
page 32).

[SG15] Erik Schneider and Wouter de Groot. spongent-avr. https:
//github.com/weedegee/spongent-avr. 2015 (cited on
page 91).

[SS a] Peter Schwabe and Ko Stoffelen. ªAll the AES you need
on Cortex-M3 and M4.º In: Selected Areas in Cryptology
± SAC 2016. Ed. by Roberto Avanzi and Howard Heys.
Lecture Notes in Computer Science (LNCS). https://
cryptojedi.org/papers/#aesarm. Springer, to appear
(cited on page 91).

[SYY12] Peter Schwabe, Bo-Yin Yang, and Shang-Yi Yang. ªSHA-
3 on ARM11 processors.º In: Progress in Cryptology ±
AFRICACRYPT 2012. Ed. by Aikaterini Mitrokotsa and
Serge Vaudenay. Vol. 7374. Lecture Notes in Computer
Science (LNCS). https : / / cryptojedi . org / papers /

#sha3arm. Springer, 2012, pp. 324±341 (cited on page 97).

[Sha45] Claude E. Shannon. A Mathematical Theory of Cryptogra-
phy. Classified report. https://www.iacr.org/museum/
shannon/shannon45.pdf. Murray Hill, NJ, USA: Bell Lab-
oratories, Sept. 1945 (cited on page 22).

[Shi+16] Tairong Shi, Jie Guan, Junzhi Li, and Pei Zhang. ªIm-
proved Collision Cryptanalysis of Authenticated Cipher
MORUS.º In: Artificial Intelligence and Industrial Engineer-
ing ± AIIE 2016. Vol. 133. Advances in Intelligent Sys-
tems Research. Atlantis Press, 2016, pp. 429±432 (cited on
page 144).

[SM87] Akihiro Shimizu and Shoji Miyaguchi. ªFast data enci-
pherment algorithm FEAL.º In: Advances in Cryptology
± EUROCRYPT’ 87. Ed. by David Chaum and Wyn L.
Price. Lecture Notes in Computer Science (LNCS). https:
//link.springer.com/chapter/10.1007/3-540-39118-

5_24. Springer. Cham: Springer, Apr. 1987, pp. 267±278

(cited on page 21).

https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://link.springer.com/chapter/10.1007/978-3-319-16715-2_19
https://link.springer.com/chapter/10.1007/978-3-319-16715-2_19
https://github.com/weedegee/spongent-avr
https://github.com/weedegee/spongent-avr
https://cryptojedi.org/papers/#aesarm
https://cryptojedi.org/papers/#aesarm
https://cryptojedi.org/papers/#sha3arm
https://cryptojedi.org/papers/#sha3arm
https://www.iacr.org/museum/shannon/shannon45.pdf
https://www.iacr.org/museum/shannon/shannon45.pdf
https://link.springer.com/chapter/10.1007/3-540-39118-5_24
https://link.springer.com/chapter/10.1007/3-540-39118-5_24
https://link.springer.com/chapter/10.1007/3-540-39118-5_24

bibliography 283

[Sho94] Peter W. Shor. ªAlgorithms for quantum computation:
discrete logarithms and factoring.º In: Proceedings 35th An-
nual Symposium on Foundations of Computer Science. https:
//doi.org/10.1109/SFCS.1994.365700. 1994, pp. 124±
134 (cited on page 6).

[Soc] American Mathematical Society. The Culture of Research
and Scholarship in Mathematics: Joint Research and Its Pub-
lication. https://www.ams.org/profession/leaders/
CultureStatement04.pdf (cited on page 9).

[SLG17a] Ling Song, Guohong Liao, and Jian Guo. ªNon-full
Sbox Linearization: Applications to Collision Attacks
on Round-Reduced Keccak.º In: Advances in Cryptology
- CRYPTO 2017. Lecture Notes in Computer Science
(LNCS). https://doi.org/10.1007/978-3-319-63715-
0_15. Springer, 2017, pp. 428±451 (cited on pages 231,
238).

[SLG17b] Ling Song, Guohong Liao, and Jian Guo. Solution to the 6-
round collision challenge. https://keccak.team/crunchy_
contest.html. 2017 (cited on page 231).

[Spia] SpinalHDL language. https://github.com/SpinalHDL/
SpinalHDL (cited on page 118).

[Sta77] National Bureau of Standards. Federal Information Process-
ing Standard 46: Data Encryption Standard. https://csrc.
nist.gov/CSRC/media/Publications/fips/46/archive/

1977-01-15/documents/NBS.FIPS.46.pdf. Gaithersburg,
MD, USA, Jan. 1977 (cited on pages 4, 21).

[Sta81] National Bureau of Standards. Federal Information Process-
ing Standard 74, Guidelines for Implementing and Using the
NBS Data Encryption Standard. https://doi.org/10.
6028/NBS.FIPS.74. Gaithersburg, MD, USA, Apr. 1981

(cited on page 4).

[Sta85] National Bureau of Standards. Federal Information Process-
ing Standard 113, Computer Data Authentication. https:
//csrc.nist.gov/publications/detail/fips/113/

archive/1985-05-30, see also https://csrc.nist.rip/

publications/fips/fips113/fips113.html. Gaithers-
burg, MD, USA, Apr. 1985 (cited on page 25).

[SN97] National Institute of Standards and Technology (NIST).
Announcing Development of a Federal Information Processing
Standard for Advanced Encryption Standard. https://csrc.
nist . gov / news / 1997 / announcing - development - of -

fips-for-advanced-encryp. 1997 (cited on page 4).

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://keccak.team/crunchy_contest.html
https://keccak.team/crunchy_contest.html
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://csrc.nist.gov/CSRC/media/Publications/fips/46/archive/1977-01-15/documents/NBS.FIPS.46.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/46/archive/1977-01-15/documents/NBS.FIPS.46.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/46/archive/1977-01-15/documents/NBS.FIPS.46.pdf
https://doi.org/10.6028/NBS.FIPS.74
https://doi.org/10.6028/NBS.FIPS.74
https://csrc.nist.gov/publications/detail/fips/113/archive/1985-05-30
https://csrc.nist.gov/publications/detail/fips/113/archive/1985-05-30
https://csrc.nist.gov/publications/detail/fips/113/archive/1985-05-30
https://csrc.nist.rip/publications/fips/fips113/fips113.html
https://csrc.nist.rip/publications/fips/fips113/fips113.html
https://csrc.nist.gov/news/1997/announcing-development-of-fips-for-advanced-encryp
https://csrc.nist.gov/news/1997/announcing-development-of-fips-for-advanced-encryp
https://csrc.nist.gov/news/1997/announcing-development-of-fips-for-advanced-encryp

284 bibliography

[SN15] National Institute of Standards and Technology (NIST).
Lightweight Cryptography. https : / / csrc . nist . gov /

Projects / lightweight - cryptography. 2015 (cited on
pages 6, 68, 115).

[SN17] National Institute of Standards and Technology (NIST).
Post-Quantum Cryptography Standardization. https : / /

csrc.nist.gov/projects/post-quantum-cryptography.
2017 (cited on page 6).

[Sto19] Ko Stoffelen. ªEfficient Cryptography on the RISC-V
Architecture.º In: Progress in Cryptology ± LATINCRYPT
2019. Ed. by Peter Schwabe and Nicolas Thériault. Lec-
ture Notes in Computer Science (LNCS). https://link.
springer.com/chapter/10.1007/978-3-030-30530-7_

16. Cham: Springer, 2019, pp. 323±340 (cited on pages 11,
115, 130, 132, 133, 136).

[Sul15] Nick Sullivan. Do the ChaCha: better mobile performance
with cryptography. https : / / blog . cloudflare . com /

do- the- chacha- better- mobile- performance- with-

cryptography/. 2015 (cited on page 67).

[TW15] Biaoshuai Tao and Hongjun Wu. ªImproving the Biclique
Cryptanalysis of AES.º In: ACISP 2015: Information Se-
curity and Privacy. Ed. by Ernest Foo and Douglas Ste-
bila. Lecture Notes in Computer Science (LNCS). https:
//link.springer.com/chapter/10.1007/978-3-319-

19962-7_3. Cham: Springer, 2015, pp. 39±56 (cited on
page 26).

[Coq] The Coq Proof Assistant ± Frequently Asked Questions. https:
//coq.inria.fr/faq (cited on pages 45, 181, 190, 213).

[Thi] Things that use Curve25519. https://ianix.com/pub/
curve25519- deployment.html. 2019 (cited on pages 5,
181).

[TS20] Martin Thomson and Barbara Stark. RFC 8874 ± Work-
ing Group GitHub Usage Guidance. https://datatracker.
ietf . org / doc / html / rfc8874. Aug. 2020 (cited on
page 253).

[Tod15] Yosuke Todo. ªStructural Evaluation by Generalized In-
tegral Property.º In: Advances in Cryptology ± EURO-
CRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin.
Vol. 9056. Lecture Notes in Computer Science (LNCS).
https://eprint.iacr.org/2015/090.pdf. Springer,
2015, pp. 287±314 (cited on page 89).

https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://link.springer.com/chapter/10.1007/978-3-030-30530-7_16
https://link.springer.com/chapter/10.1007/978-3-030-30530-7_16
https://link.springer.com/chapter/10.1007/978-3-030-30530-7_16
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://link.springer.com/chapter/10.1007/978-3-319-19962-7_3
https://link.springer.com/chapter/10.1007/978-3-319-19962-7_3
https://link.springer.com/chapter/10.1007/978-3-319-19962-7_3
https://coq.inria.fr/faq
https://coq.inria.fr/faq
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/curve25519-deployment.html
https://datatracker.ietf.org/doc/html/rfc8874
https://datatracker.ietf.org/doc/html/rfc8874
https://eprint.iacr.org/2015/090.pdf

bibliography 285

[TM16] Yosuke Todo and Masakatu Morii. ªBit-Based Division
Property and Application to Simon Family.º In: Fast Soft-
ware Encryption - 23rd International Conference, FSE 2016.
Ed. by Thomas Peyrin. Vol. 9783. Lecture Notes in Com-
puter Science (LNCS). https://eprint.iacr.org/2016/
285.pdf. Springer, 2016, pp. 357±377 (cited on page 89).

[Tur+21] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang,
ÇağdaËs Çalık, Lawrence Bassham, Jinkeon Kang, and
John Kelsey. Status Report on the Second Round of the NIST
Lightweight Cryptography Standardization Process. Tech. rep.
https://doi.org/10.6028/NIST.IR.8369. Gaithersburg,
MD, USA: National Institute of Standards and Technology
(NIST), July 2021 (cited on page 99).

[VV17] Serge Vaudenay and Damian Vizár. Under Pressure: Secu-
rity of CAESAR Candidates beyond their Guarantees. Cryptol-
ogy ePrint Archive, Report 2017/1147. https://eprint.
iacr.org/2017/1147. 2017 (cited on page 144).

[Ver26] Gilbert Sandford Vernam. ªCipher Printing Telegraph
Systems for Secret Wire and Radio Telegraphic Com-
munications.º In: Journal American Institute of Electrical
Engineers XLV (1926), pp. 109±115 (cited on page 4).

[Spib] VexRiscv simulator. https://github.com/SpinalHDL/

VexRiscv (cited on page 118).

[Vig18] Benoît Viguier. KangarooTwelve. Internet Research Task
Force draft. https://datatracker.ietf.org/doc/draft-
viguier-kangarootwelve/. Mar. 2018 (cited on page 241).

[Wan+20] Wen Wang, Bernhard Jungk, Julian Wälde, Shuwen Deng,
Naina Gupta, Jakub Szefer, and Ruben Niederhagen.
ªXMSS and Embedded Systems.º In: Selected Areas in Cryp-
tography ± SAC 2019. Ed. by Kenneth G. Paterson and Dou-
glas Stebila. Lecture Notes in Computer Science (LNCS).
https://link.springer.com/chapter/10.1007/978-

3-030-38471-5_21. Cham: Springer, 2020, pp. 523±550

(cited on page 115).

[Wat+17] Andrew Waterman, Yunsup Lee, David A. Patterson, and
Krste Asanovi. The RISC-V Instruction Set Manual. Volume
1: User-Level ISA, Version 2.2. 2017 (cited on page 115).

[Wea16] Rhys Weatherley. ArduinoLibs. https : / / rweather .

github.io/arduinolibs/crypto.html. 2016 (cited on
page 91).

[Wea20] Rhys Weatherley. Lightweight Cryptography Primitives.
https://rweather.github.io/lightweight- crypto/

index.html. 2020 (cited on pages 11, 134, 137).

https://eprint.iacr.org/2016/285.pdf
https://eprint.iacr.org/2016/285.pdf
https://doi.org/10.6028/NIST.IR.8369
https://eprint.iacr.org/2017/1147
https://eprint.iacr.org/2017/1147
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/
https://link.springer.com/chapter/10.1007/978-3-030-38471-5_21
https://link.springer.com/chapter/10.1007/978-3-030-38471-5_21
https://rweather.github.io/arduinolibs/crypto.html
https://rweather.github.io/arduinolibs/crypto.html
https://rweather.github.io/lightweight-crypto/index.html
https://rweather.github.io/lightweight-crypto/index.html

286 bibliography

[WP96] Abel Weinrib and Jon Postel. RFC 2014 ± IRTF Research
Group Guidelines and Procedures. https://datatracker.
ietf . org / doc / html / rfc2014. Oct. 1996 (cited on
page 252).

[Wu11] Hongjun Wu. The Hash Function JH. Submission to NIST
(round 3). http : / / www3 . ntu . edu . sg / home / wuhj /

research/jh/jh_round3.pdf. 2011 (cited on page 244).

[WH16] Hongjun Wu and Tao Huang. The Authenticated Cipher
MORUS (v2). Submission to CAESAR: Competition for
Authenticated Encryption. Security, Applicability, and Ro-
bustness (Round 3 and Finalist). http://competitions.
cr.yp.to/round3/morusv2.pdf. Sept. 2016 (cited on
pages 143±145).

[WP13] Hongjun Wu and Bart Preneel. ªAEGIS: A Fast Authenti-
cated Encryption Algorithm.º In: Selected Areas in Cryptog-
raphy ± SAC 2013. Ed. by Tanja Lange, Kristin E. Lauter,
and Petr Lisonek. Vol. 8282. Lecture Notes in Computer
Science (LNCS). https://doi.org/10.1007/978-3-662-
43414-7_10, see also: https://eprint.iacr.org/2013/
695. Springer, 2013, pp. 185±201 (cited on pages 143, 144).

[WP16] Hongjun Wu and Bart Preneel. AEGIS: A Fast Authenti-
cated Encryption Algorithm (v1.1). Submission to CAESAR:
Competition for Authenticated Encryption. Security, Ap-
plicability, and Robustness (Round 3 and Finalist). http:
//competitions.cr.yp.to/round3/aegisv11.pdf. Sept.
2016 (cited on pages 143, 144).

[Xia+16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dong-
dai Lin. ªApplying MILP Method to Searching Integral
Distinguishers Based on Division Property for 6 Light-
weight Block Ciphers.º In: Advances in Cryptology ± ASI-
ACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi
Takagi. Vol. 10031. Lecture Notes in Computer Science
(LNCS). https://eprint.iacr.org/2016/857. Springer,
2016, pp. 648±678 (cited on page 89).

[Ye+17] Katherine Q. Ye, Matthew Green, Naphat Sanguansin,
Lennart Beringer, Adam Petcher, and Andrew W. Appel.
ªVerified Correctness and Security of MbedTLS HMAC-
DRBG.º In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS 17.
https://doi.org/10.1145/3133956.3133974. New York,
NY, USA: Association for Computing Machinery, 2017,
pp. 2007±2020 (cited on page 184).

[Yuv79] Gideon Yuval. ªHow to swindle Rabin.º In: Cryptologia
3.3 (1979). https://www.tandfonline.com/doi/pdf/10.
1080/0161-117991854025, pp. 187±191 (cited on page 27).

https://datatracker.ietf.org/doc/html/rfc2014
https://datatracker.ietf.org/doc/html/rfc2014
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://competitions.cr.yp.to/round3/morusv2.pdf
http://competitions.cr.yp.to/round3/morusv2.pdf
https://doi.org/10.1007/978-3-662-43414-7_10
https://doi.org/10.1007/978-3-662-43414-7_10
https://eprint.iacr.org/2013/695
https://eprint.iacr.org/2013/695
http://competitions.cr.yp.to/round3/aegisv11.pdf
http://competitions.cr.yp.to/round3/aegisv11.pdf
https://eprint.iacr.org/2016/857
https://doi.org/10.1145/3133956.3133974
https://www.tandfonline.com/doi/pdf/10.1080/0161-117991854025
https://www.tandfonline.com/doi/pdf/10.1080/0161-117991854025

bibliography 287

[ZBB16] Jean Karim Zinzindohoue, Evmorfia-Iro Bartzia, and
Karthikeyan Bhargavan. ªA Verified Extensible Library
of Elliptic Curves.º In: 2016 IEEE 29th Computer Security
Foundations Symposium (CSF). https://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=7536383. IEEE,
2016, pp. 296±309 (cited on pages 8, 183).

[Zin+17] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche. ªHACL∗:
A verified modern cryptographic library.º In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. https://eprint.iacr.org/2017/
536.pdf. Association for Computing Machinery, 2017,
pp. 1789±1806 (cited on pages 8, 183, 214).

[ZDW19] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. ªCol-
lision Attacks on Round-Reduced Gimli-Hash/Ascon-
Xof/Ascon-Hash.º In: IACR Cryptology ePrint Archive 2019

(2019). https://eprint.iacr.org/2019/1115, p. 1115

(cited on pages 99, 100).

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7536383
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7536383
https://eprint.iacr.org/2017/536.pdf
https://eprint.iacr.org/2017/536.pdf
https://eprint.iacr.org/2019/1115

A C R O N Y M S

ACNS Applied Cryptography and Network Security

AD Associated Data

AEAD Authenticated Encryption scheme with Associated Data

AES Advanced Encryption Standard

AMS American Mathematical Society

API Application Programming Interface

ARX Add Rotate and Xor

AST Abstract Syntax Tree

AVX Advanced Vector Extensions

CBC Cipher Block Chaining

CFRG Crypto Forum Research Group

CI Continuous Integration

CICO constrained-input constrained-output

CPU Central Processing Units

CTR Counter

CVE Common Vulnerabilities and Exposures

DDT differential distribution table

DES Data Encryption Standard

DP Differential Probability

DSL domain-specific language

ECC Elliptic-Curve Cryptography

EDP Expected Differential Probability

FEAL Fast data Encipherment ALgorihtm

FIPS Federal Information Processing Standard

GPG GNU Privacy Guard

IACR International Association for Cryptologic Research

IBM International Business Machines Corporation

IESG Internet Engineering Steering Group

IETF Internet Engineering Task Force

IOT ªInternet of Thingsº

IRSG Internet Research Steering Group

IRTF Internet Research Task Force

289

290 acronyms

ISO International Organization for Standardization

IP Internet Protocol

IV Initial Value

KCP Keccak code package

LWC Lightweight Cryptography

MAC Message Authentication Code

MITM Meet-In-The-Middle

NBS National Bureau of Standards

NIST National Institute of Standards and Technology

NSA National Security Agency

NSS Network Security Services

OTP One-Time Pad

P-box Permutation box

PRP pseudo-random permutation

RG Research Group

RFC Request for Comments

S-box Substitution box

SHA Secure Hash Algorithm

SIMD single-instruction-multiple-data

SoK Systematization-of-Knowledge

SPN Substitution Permutation Network

SSD solid-state drives

SSE Streaming SIMD Extensions

SSH Secure Shell

TCP Transmission Control Protocol

TLS Transport Layer Security

VST Verifiable Software Toolchain

WG Working Group

XOF eXtendable Output Function

XOP eXtended Operations

R E S E A R C H D ATA M A N A G E M E N T

This thesis research has been carried out under the research data
management policy of the Institute for Computing and Information
Science of Radboud University, The Netherlands.5

The following research datasets have been produced during this
PhD research:

• Chapter 4: Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C.,
Mendel, F., Nawaz, K., Schneider, T., Schwabe, P., Standaert,
F.-X., Todo, Y. & Viguier., B.G.P. (2017). Gimli: a cross-platform
permutation (2017).

• Chapter 5: Campos, F., Jellema, L., Lemmen, M., Müller, L.,
Sprenkels, D. & Viguier, B.G.P. (2020). Assembly or Optimized C
for Lightweight Cryptography on RISC-V?

• Chapter 6: Ashur, T., Eichlseder, M., Lauridsen, M.M., Leurent,
G., Minaud, B., Rotella, Y., Sasaki, Y. & Viguier, B.G.P. (2018).
Cryptanalysis of MORUS.

• Chapter 7: Schwabe, P., Viguier, B.G.P., Weerwag, T. & Wiedijk, F.
(2020). A Coq proof of the correctness of X25519 in TweetNaCl.

• Chapter 8: Bertoni, G., Daemen, J., Peeters, M., Assche, G. Van,
Keer, R. Van & Viguier, B.G.P. (2018) KangarooTwelve: Fast Hash-
ing Based on KECCAK-p.

An archive A Panorama on Classical Cryptography - Files with all the
source files, with versions corresponding to the ones presented in this
thesis, is available at: https://doi.org/10.5281/zenodo.4534692.

5 ru.nl/icis/research-data-management/, last accessed January 20th, 2020.

291

https://doi.org/10.5281/zenodo.4534692
https://www.ru.nl/icis/research-data-management/

S U M M A RY

When taking a picture, the landscape photographer has to decide
between using a telephoto lens, focusing on details at distance; or
using a wide-angle one to capture a broad section of the scene. Sim-
ilarly, in this thesis we chose the second approach to cover a large
part of the classical cryptography world: we examine the design of
new symmetric primitive; we explore implementation strategies of
lightweight schemes; we analyze a new high performance algorithm;
we use formal verification to prove the correctness of Elliptic-Curve
Cryptography (ECC) implementations; and finally we describe one of
the way algorithms are standardized.

part i . This aims to provide the necessary background information
for a broad understanding of the concepts presented later in the
text. Chapter 2 focuses on the basis of symmetric cryptography and
cryptanalysis, and chapter 3 gives the reader a brief introduction to
formal verification.

The rest of this thesis (part ii, iii, & iv) is organized a sequence of
paper, whose contents are succinctly described here.

chapter 4 . This chapter introduces Gimli, a 384-bit permutation
designed to achieve high security with high performance across a
broad range of platforms, covering 64-bit Intel/amd server CPUs, arm

smartphone CPUs, arm & avr microcontrolers, and other specialized
devices. Additionally, we introduce Gimli-Cipher and Gimli-Hash,
our submissions at the NIST lightweight cryptography competition.

chapter 5 . This chapter presents different optimization strategies
applied to several candidates of the NIST lightweight cryptography
standardization efforts. We focus on the RISC-V 32 bit architecture and
study the general impact of optimizations in assembly and in plain C.
We present optimized implementations with speed-up of up to 81%
over available implementation at that time. Furthermore, we highlight
the necessity to benchmark implementations on physical devices as
opposed to only using RISC-V simulators.

chapter 6 . This chapter focuses on Morus, a high-performance au-
thenticated encryption algorithm submission and finalist at the caesar

competition. We analyze the candidate’s components (initialization,
state update and tag generation) and report several results.

Our main result is the linear correlation in the keystream of full
Morus, which can be used to distinguish its output from random and

293

294 summary

to recover plaintext bits in the broadcast setting. We exhibit correlation
which can be exploited after 2152 encryptions, breaking the 256-bit
security claim.

chapter 7 . This chapter presents the mechanized formal proof
of correctness of the X25519 key-exchange protocol in the TweetNaCl
cryptographic library. With the theorem prover Coq, we provide three
computer-verified proofs: (1) the implementation matches the RFC 7748

standard without undefined behaviour, overflows etc. (2) the RFC

matches the definition from Bernstein’s 2006 paper, (3) the X25519 def-
inition in Bernstein’s paper correctly computes a scalar multiplication
on the elliptic curve Curve25519.

This proof makes use of the Verifiable Software Toolchain to prove
the C implementation correctness and the elliptic-curve library from
Bartzia and Strub to verify X25519.

part iv. Chapter 8 proposes KangarooTwelve, a fast and secure
XOF Ða hash function with arbitrary output lengthÐ aiming at higher
speed than the FIPS-202’s SHA-3 functions. It provides the same security
strength as the shake128 but with two major improvements. First it
comes with a built-in parallel mode which efficiently exploits SIMD

instructions. Second it makes use of the ten years of cryptanalysis of
Keccak, halving the number of rounds. With these two changes Kan-
garooTwelve achieves significant speed improvement and consumes
less than 0.55 cycles/bytes for long messages on the Intel’s SkylakeX
architecture.

Chapter 9 focuses our efforts on the standardization of the Kanga-
rooTwelve function at the IRTF. More generally we provide insights
of how the IETF standardization process works with an emphasis of
the procedures within the CFRG working group.

S A M E N VAT T I N G

Bij het maken van een foto moet een landschapsfotograaf kiezen tussen
een telelens, met een focus op details van een afstand; of een groothoek-
lens om het hele landschap in een beeld vast te leggen. Op eenzelfde
manier kiezen we in deze proefschrift voor de tweede aanpak om een
groot deel van de klassieke cryptografische wereld te omvatten: we
onderzoeken het design van nieuwe symmetrische primitieven; we ver-
kennen verschillende strategieën voor implementatie van lichtgewicht
cryptosystemen; we analyseren een nieuw hoogpresterend encryptie-
algoritme; we gebruiken formele verificatie om de correctheid van
implementaties van cryptografie met elliptische krommen (ECC) te
bewijzen; en tenslotte beschrijven we een van de manieren waarop
algoritmes gestandaardiseerd worden.

deel i . In dit deel beschrijven we de achtergrondinformatie die
nodig is om concepten die later aan bod komen goed te begrijpen.
Hoofdstuk 2 focust op de basis van symmetrische cryptografie en
cryptanalyse, en hoofdstuk 3 geeft de lezer een korte introductie tot
formele verificatie.

De rest van deze proefschrift (deel ii, iii & iv) is georganiseerd als
een serie publicaties, waarvan we de inhoud hier beknopt beschrijven.

hoofdstuk 4 . Dit hoofdstuk introduceert Gimli, een 384-bits per-
mutatie ontworpen voor sterke veiligheid met hoge prestaties over een
breed spectrum van platformen, die onder andere 64-bits Intel/amd

server CPUs, arm smartphone CPUs, arm & avr microcontrollers en
andere gespecialiseerde apparatuur omvat. Daarnaast introduceren
we Gimli-Cipher en Gimli-Hash, onze inzendingen voor de NIST

lightweight cryptography competitie.

hoofdstuk 5 . Dit hoofdstuk presenteert verschillende optimali-
satie-strategieën toegepast op verschillende kandidaten voor het NIST

lightweight cryptography standaardisatieproces. We focussen specifiek
op de RISC-V 32-bits architectuur en bestuderen de algemene impact
van optimalisaties in assembly en in standaard C. We presenteren
geoptimaliseerde implementaties die een versnelling van meer dan
81% geven ten opzichte van beschikbare implementaties van die tijd.
Verder belichten we de noodzaak om implementaties te benchmarken
op fysieke apparaten, in tegenstelling tot RISC-V simulators.

hoofdstuk 6 . Dit hoofdstuk focust op Morus, een hoogpreste-
rend algoritme voor geauthenticeerde encryptie en een finalist bij de
caesar competitie. We analyseren verschillende componenten van

295

296 samenvatting

dit algoritme (initialisatie, toestandsupdate, en tag-generatie). Het
belangrijkste resultaat is de lineaire correlatie in de keystream van
Morus, die gebruikt kan worden om zijn output van willekeurige
output te onderscheiden, waarmee de originele tekst achterhaald kan
worden in een broadcast situatie. De correlatie in de keystream kan
worden uitgebuit na 2152 vercijferingen, en breekt daarmee de 256-bits
veiligheid.

hoofdstuk 7 . Dit hoofdstuk presenteert het gemechaniseerde for-
mele bewijs van correctheid van het X25519-sleuteluitwisselingspro-
tocol in de TweetNaCl cryptografische bibliotheek. Met de stellingbe-
wijzer Coq geven we drie bewijzen: (1) de implementatie komt overeen
met de RFC 7748-standaard zonder ongedefinieerd gedrag, overflows
etc. (2) de RFC komt overeen met de definitie van de publicatie van
Bernstein uit 2006, (3) de X25519-definitie in Bernstein’s publicatie
berekent het scalaire veelvoud op de elliptische kromme Curve25519.
Dit bewijs maakt gebruik van de Verifiable Software Toolchain om de
correctheid van de C-implementatie te bewijzen, en van de elliptische-
krommenbibliotheek van Bartzia en Strub om X25519 te verifiëren.

deel iv. Hoofdstuk 8 stelt KangarooTwelve voor: een snelle en
veilige XOF ±een hash functie met willekeurige outputlengte± die mikt
op een hogere snelheid dan de SHA-3 functies uit FIPS-202. Het biedt
dezelfde veiligheid als shake128, maar bevat twee grote verbeterin-
gen. Allereerst beschikt het over een ingebouwde parallelmodus die
efficiënt gebruik maakt van SIMD instructies. Bovendien maakt het
gebruik van tien jaar ervaring in cryptoanalyse van Keccak, waar-
door het aantal rondes halveert. Met deze twee veranderingen bereikt
KangarooTwelve een significante versnelling en gebruikt het minder
dan 0.55 cycles per byte voor langere berichten op Intel’s SkylakeX
architectuur.

Hoofdstuk 9 focust op de standaardisatie van de KangarooTwelve

functie bij het IRTF. Algemener gesproken geven we inzicht in hoe het
IETF-standaardisatieproces werkt, met een nadruk op de procedures in
de CFRG werkgroep.

S O M M A I R E

Afin de prendre une photo, le photographe a le choix entre utiliser
un téléobjectif, pour simplifier la composition et de se focaliser sur
un détail lointain, et utiliser un objectif grand angle pour réaliser un
panorama. Nous avons choisi la seconde approche dans ce manus-
crit : nous esquissons le large sujet qu’est la cryptographie. Pour cela,
nous examinons le design d’une nouvelle primitive cryptographique,
nous explorons les multiples stratégies d’implémentations pour des
algorithmes de chiffrement léger, nous analysons un algorithme de
chiffrement à haute performance, nous nous penchons sur l’utilisation
des méthodes formelles pour prouver la bonne d’implémentation de
la cryptographie à courbes elliptiques (ECC), et enfin, nous détaillons
le processus de standardisation d’une nouvelle fonction de hachage.

partie i . Dans cette partie, nous posons, dans le premier chapitre,
les bases nécessaires à la compréhension des idées ensuite développées
dans cette thèse. Le second chapitre présente plus en détails les notions
de la cryptographie et de la cryptanalyse symétrique. Puis, le troisième
chapitre fourni une brève introduction aux méthodes de vérification
formelle.

Dans la suite de cette thèse ; c’est-à-dire les parties ii, iii et iv ; une
suite de publications est présentée dont nous décrivons le contenu
ci-dessous.

chapitre 4 . Ce chapitre présente Gimli, une permutation de 384

bits prévue pour un haut niveau de sécurité, sans compromis de per-
formance, pour un large éventail de plateformes couvrant : les serveurs
avec processeurs 64 bits Intel et amd, les téléphones avec processeur
arm, les microcontrôleurs à processeur arm et avr, ainsi qu’une va-
riété d’outils specialisés. De plus, nous décrivons nos candidats à la
compétition de la cryptographie légère du NIST : Gimli-Cipher et
Gimli-Hash à.

chapitre 5 . Ce chapitre présente différentes stratégies d’optimisa-
tions possible qui sont appliquées à plusieurs candidats de la compéti-
tion pour la cryptographie légère du NIST. Nous nous focalisons sur
l’architecture 32 bit RISC-V, et nous étudions l’impact des optimisa-
tions en assembleur et dans le langage C.

En guise de résultat, nous obtenons des améliorations de vitesse
allant jusqu’à 81% par rapport à d’autres implémentations dès à pré-
sent disponibles. De plus, nous soulignons la nécessité de tester les
implémentations sur des cœurs physiques, et non pas seulement sur
des simulateurs RISC-V.

297

298 sommaire

chapitre 6 . Ce chapitre se concentre sur Morus, un algorithme de
chiffrement à haute performance avec authentification. Nous analysons
les composants (l’initialisation, la mise-à-jour de l’état et la génération
du tag d’authentification) de ce finaliste de la compétition caesar.

À la suite de cela, nous avons trouvé une corrélation linéaire dans le
flot de chiffrement de Morus. Ce biais peut être utilisé pour identifier
l’algorithme utilisé par rapport à un flot complètement aléatoire. Il
peut aussi être mis à profit pour extraire des bits du message en clair
dans un système de diffusion. La corrélation pouvant être exploitée
après 2152 chiffrements, elle casse le niveau de sécurité revendiqué à
256 bits.

chapitre 7 . Ce chapitre présente une preuve formelle de l’exacti-
tude du protocole d’échange de clé X25519 dans son implémentation
dans la bibliothèque cryptographique TweetNaCl. Nous utilisons l’as-
sistant de preuve Coq pour prouver : (1) que l’implémentation répond
bien au standard RFC 7748, et ce sans comportement non-défini, (2)
que le standard RFC correspond bien aux définitions du papier de
Bernstein publié en 2006, (3) que la définition de X25519 dans le papier
de Bernstein calcule correctement une multiplication scalaire sur la
courbe elliptique Curve25519.

Cette preuve utilise le VST afin de prouver la justesse de l’implémen-
tation en C du protocole X25519. La preuve de la définition de X25519

s’appuie également sur la bibliothèque pour les courbes elliptiques de
Bartzia et Strub.

partie iv. Le chapitre 8 décrit KangarooTwelve, une fonction
de hachage à sortie variable rapide et sûre. Cette fonction vise des
vitesses supérieures à celles du standard SHA-3 défini dans FIPS-202.
Le niveau de sécurité revendiqué est égal à celui de shake128, mais
apporte deux améliorations majeures. Tout d’abord, notre fonction
utilise un parallélisme interne qui exploite les instructions SIMD, et
elle met à profit les dix ans de cryptanalyse de Keccak pour diviser
par deux le nombre de rondes requises. Avec ces deux changements,
KangarooTwelve fourni des améliorations de vitesse conséquent,
utilisant moins de 0,55 cycles par octet, pour des messages longs,
testée sur la dernière architecture serveur Intel SkylakeX.

Enfin, le dernier chapitre de cette thèse se tourne sur les efforts de
standardisation de KangarooTwelve au sein de l’IRTF. Nous décrivons
plus en détail le processus au sein du groupe de travail CFRG.

A B O U T T H E AU T H O R

Benoît Viguier was born in Angers, France, on March 29th, 1988. From
2006, he attended the Higher School Preparatory Classes (CPGE) at
the Lycée Chateaubriand in Rennes. Two years later he joined the 3rd

year Bachelor of Mathematics at Université Rennes 1 and subsequently
obtained in 2011 his Master’s degree of Mathematics, with a major in
teaching. One year later he received his CAPES1 of Mathematics and
continued as a Mathematics teacher in high school and junior high
school throughout the school years of 2013 and 2014.

In September 2014, he attended the National Institute of Applied
Sciences (INSA) in Rennes, and joined the double-degree program
Master Research in Computer Science in 2015. He received his Engineer
Diploma and Master of Research degree in 2016 before starting his
PhD at Radboud University, in Nijmegen, The Netherlands.

mens sana in corpore sano. While working on his PhD, Benoît
started dance sport, and is now practicing at a high level. In 2018, he
joined the Sway of Life formation team. Together they competed thrice
at the Dutch championship (2018, 2019, & 2021), ranking first each time.
They also got 6th place in the finals of the 2019 World championship
in Moscow, Russia. In couple dancing with his dance partner, they
reached 4th place in C-class on their first competition at the 2020 Dutch
championship.

In addition to dancing, Benoît is heavily involved in photography
with interest ranging from landscapes (sunrises & sunsets), dance
sport, and portraiture in natural light.

1 Certificate of aptitude for secondary school teachers

299

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

[Ash+18] Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen,
Gaëtan Leurent, Brice Minaud, Yann Rotella, Yu Sasaki,
and Benoît Viguier. ªCryptanalysis of MORUS.º In: Ad-
vances in Cryptology ± ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December
2-6, 2018, Proceedings, Part II. Ed. by Thomas Peyrin and
Steven D. Galbraith. Vol. 11273. Lecture Notes in Com-
puter Science (LNCS). https://doi.org/10.1007/978-
3-030-03329-3_2, see also https://eprint.iacr.org/

2018/464. Springer, 2018, pp. 35±64.

[Ber+17a] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro
Maat Costa Massolino, Florian Mendel, Kashif Nawaz,
Tobias Schneider, Peter Schwabe, François-Xavier Stan-
daert, Yosuke Todo, and Benoît Viguier. ªGimli : A Cross-
Platform Permutation.º In: Cryptographic Hardware and
Embedded Systems ± CHES 2017. Ed. by Wieland Fischer
and Naofumi Homma. Vol. 10529. Lecture Notes in Com-
puter Science (LNCS). https://doi.org/10.1007/978-
3-319-66787-4_15, see also https://eprint.iacr.org/

2017/630. Springer, 2017, pp. 299±320.

[Ber+18b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van
Assche, Ronny Van Keer, and Benoît Viguier. ªKanga-
rooTwelve: Fast Hashing Based on Keccak-p.º In: Applied
Cryptography and Network Security - 16th International Con-
ference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Pro-
ceedings. Ed. by Bart Preneel and Frederik Vercauteren.
Vol. 10892. Lecture Notes in Computer Science (LNCS).
https://doi.org/10.1007/978- 3- 319- 93387- 0_21,
see also https://eprint.iacr.org/2016/770. Springer,
2018, pp. 400±418.

[Cam+20] Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller,
Daan Sprenkels, and Benoît Viguier. ªAssembly or Op-
timized C for Lightweight Cryptography on RISC-V?º
In: CANS 2020: Cryptology and Network Security. Ed. by
Stephan Krenn, Haya Shulman, and Serge Vaudenay.
Vol. 12579. Lecture Notes in Computer Science (LNCS).
https://doi.org/10.1007/978- 3- 030- 65411- 5_26.
Cham: Springer, 2020, pp. 526±545.

301

https://doi.org/10.1007/978-3-030-03329-3_2
https://doi.org/10.1007/978-3-030-03329-3_2
https://eprint.iacr.org/2018/464
https://eprint.iacr.org/2018/464
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_15
https://eprint.iacr.org/2017/630
https://eprint.iacr.org/2017/630
https://doi.org/10.1007/978-3-319-93387-0_21
https://eprint.iacr.org/2016/770
https://doi.org/10.1007/978-3-030-65411-5_26

302 publications

[Sch+21] Peter Schwabe, Benoît Viguier, Timmy Weerwag, and
Freek Wiedijk. ªA Coq proof of the correctness of
X25519 in TweetNaCl.º In: 2021 IEEE 34th Computer
Security Foundations Symposium (CSF). https : / / doi .

ieeecomputersociety . org / 10 . 1109 / CSF51468 . 2021 .

00023. Los Alamitos, CA, USA: IEEE Computer Society,
June 2021, pp. 265±280.

[Vig18] Benoît Viguier. KangarooTwelve. Internet Research Task
Force draft. https://datatracker.ietf.org/doc/draft-
viguier-kangarootwelve/. Mar. 2018.

https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00023
https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00023
https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00023
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/

colophon

proofreaders . This thesis would not have reached such quality
without the feedback and patience of the following amazing people
who took the time to go through the text in its multiple iterations:
Denisa Greconici (Chapters 1, 8, & 9),
Peter Schwabe (Chapter 1, 4, 5 & 9),
Joan Daemen (Chapter 2, 6, & 8),
Krijn Reijnders (Chapter 2, & Samenvatting),
Freek Wiedijk (Chapter 3, 7, & Samenvatting),
Gilles Van Assche (Chapter 2),
Alyssa Byrnes (Chapter 3),
Łukasz Chmielewski (Chapter 3),
Marcel Fourné (Chapter 3),
Herman Geuvers (Chapter 3),
Daan Sprenkels (Chapter 5),
Robert Moskowitz (Chapter 9),
Thom Wiggers (Samenvatting),
Anna Guinet (Sommaire)

xkcd. Figures 1.1 and 7.5 were originally published on xkcd.com.
They are licensed under under a Creative Commons Attribution-
NonCommercial 2.5 License; see https://xkcd.com/license.html,
last accessed March 18th, 2021.

cover design. With Loes Kema, thank you for your patience with
the multiple iterations. Photographs taken by the author.

style . This document was typeset using the typographical look-
and-feel classicthesis developed by André Miede and Ivo PletikosiÂc.
The style was inspired by Robert Bringhurst’s seminal book on typog-
raphy ªThe Elements of Typographic Styleº.

printed. By GVO Drukkers & Vormgevers ± proefschriften.nl

isbn. 978±94±6332±806±7

final version. As of October 27, 2021 (58aa764e).

https://xkcd.com
https://creativecommons.org/licenses/by-nc/2.5/
https://creativecommons.org/licenses/by-nc/2.5/
https://xkcd.com/license.html
proefschriften.nl

	Commissie
	Dedication
	Acknowledgments
	Contentsat a Glance
	Table of Contents
	 Introduction & Preliminaries
	1 Introduction
	1.1 A bit of History
	1.2 Organization of this Thesis
	1.3 Contributions

	2 A brief Introduction to Symmetric Cryptography
	2.1 Definitions and Notations
	2.2 Permutations, Block Ciphers and Hash Functions
	2.2.1 Elements
	2.2.2 Security notions

	2.3 Sponge Constructions
	2.3.1 In Hash Functions
	2.3.2 Duplex constructions for AEAD Schemes

	2.4 Keccak & SHA-3
	2.4.1 Keccak-f
	2.4.2 SHA-3

	2.5 Differential Cryptanalysis
	2.5.1 Differences
	2.5.2 Differential Probability and Weight
	2.5.3 Trails
	2.5.4 Exploiting Trails

	3 Formal Reasoning in a Nutshell
	3.1 Logic
	3.1.1 Notations
	3.1.2 Intuitionistic Logic

	3.2 Coq
	3.3 Verifying Programs
	3.3.1 Floyd-Hoare Logic
	3.3.2 Separation Logic

	3.4 CompCert and the Verifiable Software Toolchain
	3.5 A simple proof of the correctness of a big-number addition
	3.6 From theory to practice
	3.A Verification of the correctness of A in TweetNaCl

	 Designing, Implementing, Breaking
	4 Gimli
	4.1 Introduction
	4.2 Gimli specification
	4.2.1 Notation
	4.2.2 The state
	4.2.3 The non-linear layer
	4.2.4 The linear layer
	4.2.5 The round constants
	4.2.6 Putting it together
	4.2.7 Hashing
	4.2.8 Authenticated encryption

	4.3 Understanding the Gimli design
	4.3.1 Vectorization
	4.3.2 Logic operations and shifts
	4.3.3 32-bit words
	4.3.4 State size
	4.3.5 Working locally
	4.3.6 Parallelization
	4.3.7 Compactness
	4.3.8 Inside the SP-box: choice of words and rotation distances
	4.3.9 Bijectivity of Gimli
	4.3.10 Application to hashing
	4.3.11 Application to Authenticated Encryption

	4.4 Security analysis
	4.4.1 Diffusion
	4.4.2 Differential Cryptanalysis
	4.4.3 Algebraic Degree and Integral Attacks

	4.5 Implementations
	4.5.1 FPGA & ASIC
	4.5.2 SP-box in assembly
	4.5.3 8-bit microcontroller: AVR ATmega
	4.5.4 32-bit low-end embedded microcontroller: arm Cortex-M0
	4.5.5 32-bit high-end embedded microcontroller: arm Cortex-M3
	4.5.6 32-bit smartphone CPU: arm Cortex-A8 with NEON
	4.5.7 64-bit server CPU: Intel Haswell

	4.6 Conclusion: NIST-LWC and third party cryptanalysis.
	4.A The Gimli permutation in C
	4.B Gimli-Hash in C
	4.C Encryption function of Gimli-Cipher in C
	4.D Decryption function of Gimli-Cipher in C
	4.E The Gimli permutation in hacspec
	4.F Gimli-Hash in hacspec
	4.G Encryption function of Gimli-Cipher in hacspec
	4.H Decryption function of Gimli-Cipher in hacspec
	4.I Avalanche Criterion

	5 Assembly or Optimized C for Lightweight Cryptography on RISC-V?
	5.1 Introduction
	5.2 RISC-V
	5.2.1 Architecture
	5.2.2 Instruction set
	5.2.3 Executing code

	5.3 Optimized Algorithms
	5.3.1 Gimli
	5.3.2 Sparkle
	5.3.3 Saturnin
	5.3.4 Ascon
	5.3.5 Delirium
	5.3.6 Xoodyak
	5.3.7 AES
	5.3.8 Keccak

	5.4 Comparison with other implementations and additional benchmarks
	5.5 The RISC-V Bitmanip Extension
	5.6 Conclusion
	5.A Benchmark of other implementations

	6 Cryptanalysis of Morus
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Specification of MORUS
	6.2.2 Notation

	6.3 Rotational Invariance and MiniMORUS
	6.3.1 Rotationally Invariant Linear Combinations
	6.3.2 MiniMORUS

	6.4 Linear Trail for MiniMORUS
	6.4.1 Overview of the Trail
	6.4.2 Trail Equation
	6.4.3 Correlation of the Trail
	6.4.4 Experimental Verification

	6.5 Trail for Full MORUS
	6.5.1 Making the Trail Rotationally Invariant
	6.5.2 Correlation of the Full Trail
	6.5.3 Taking Variable Plaintext into Account

	6.6 Discussion
	6.6.1 Keystream Correlation
	6.6.2 Data Complexity
	6.6.3 Design Considerations

	6.7 Analysis on Reduced MORUS
	6.7.1 Forgery with Reduced Finalization
	6.7.2 Extending State Recovery to Key Recovery

	6.8 Conclusion
	6.A Trail Equation for [640]
	6.B Trail Equation for [1280]
	6.C Trail Equation for full [640]
	6.D Trail Equation for full MORUS-1280

	 Verifying
	7 A Coq proof of the correctness of X25519 in TweetNaCl
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Arithmetic on Montgomery curves
	7.2.2 The X25519 key exchange
	7.2.3 TweetNaCl specifics
	7.2.4 X25519 in TweetNaCl
	7.2.5 Coq, separation logic, and VST

	7.3 Formalizing X25519 from RFC 7748
	7.4 Proving equivalence of X25519 in C and Coq
	7.4.1 Applying the Verifiable Software Toolchain
	7.4.2 Number representation and C implementation
	7.4.3 Towards faster proofs

	7.5 Proving that X25519 matches the mathematical model
	7.5.1 Formalization of elliptic Curves
	7.5.2 Curves, twists and extension fields

	7.6 Conclusion
	7.A The complete X25519 code from TweetNaCl
	7.B Coq definitions
	7.B.1 Montgomery Ladder
	7.B.2 RFC in Coq

	7.C Organization of the proof files
	7.D Proof by reflection of the multiplicative inverse in GF

	 Standardizing
	8 KangarooTwelve: fast hashing based on Keccak-p
	8.1 Introduction
	8.2 Specifications of KangarooTwelve
	8.2.1 The inner compression function F
	8.2.2 The merged input string S
	8.2.3 The tree hash mode
	8.2.4 Security claim

	8.3 Rationale
	8.3.1 Implications of the security claim
	8.3.2 Security of the mode
	8.3.3 Sakura compatibility
	8.3.4 Choice of B
	8.3.5 Choice of the number of rounds

	8.4 MarsupilamiFourteen
	8.5 Implementation
	8.5.1 Byte representation
	8.5.2 Structuring the implementation
	8.5.3 256-bit SIMD
	8.5.4 512-bit SIMD
	8.5.5 Comparison with other functions

	8.6 Conclusion
	8.A KangarooTwelve code

	9 The IETF-IRTF Standardization process
	9.1 The IETF, the IRTF, and the CFRG
	9.2 Writing an RFC and the Standardization process
	9.3 RFC References

	 Appendix
	 Bibliography
	 Acronyms
	 Research Data Management
	 Summary
	 Samenvatting
	 Sommaire
	 About the Author
	 Publications
	Colophon

