
Assembly or Optimized C for Lightweight

Cryptography on RISC-V?

CANS 2020

19th International Conference on Cryptology and Network Security

Fabio Campos1, Lars Jellema2, Mauk Lemmen2, Lars Müller1,

Daan Sprenkels2, Benoit Viguier2

1RheinMain University of Applied Sciences, Germany
2Radboud University, The Netherlands



Outline

2 / 100



Basic idea

� analysis of strategies for optimizing lightweight cryptography

� several (round 2) candidates of NIST’s lightweight

cryptography standardization project

� on a RISC-V architecture

� assembly or Optimized C?

3 / 100



Preliminaries



RISC-V

� a new open reduced instruction set architecture (ISA)

� research project that started at UC Berkely in 2010

� a serious competitor to ARM?

� frozen 32-bit base ISA (RV32I) and 64-bit (RV64I)

� general implementation strategies are derived and discussed

RV32I

� 32 32-bit registers x0–x31

� Basic three-operand arithmetic, bitwise, basic shift &

load/store instructions

� No: rotate instructions, carry flag, nice bit operation

instruction

� Compensated by extensions: M, A, F, D, B, V, C, ...

4 / 100



Environment

SiFive HiFive1 Board

� 5-stage single-issue in-order pipelined RV32IMAC E31 CPU

� < 384 MHz, 64 KiB RAM, 16 MiB flash

� 16 KiB instruction cache

5 / 100



Optimized C

� optimized implementation usually written directly in assembly

� considering the small size of the RISC-V ISA

� ensuring no branch on secret data, code mimics assembly

instructions

� translation of an assembly implementation back into C

� compiler further optimize and take care of register allocation

6 / 100



Optimized Algorithms



Gimli 1/2

� NIST lightweight round 2 candidate

� lightweight scheme (Gimli-Hash & Gimli-Cipher)

� 384-bit (3 x 4 matrix of 32-bit words) permutation

7 / 100



Gimli - optimization 2/2

� careful scheduling of instructions

� saving only 4 callee into the stack

� unrolling in C over 8 rounds

� renaming variable to avoid move operations

� speed-up up to 19%

type C-ref Assembly Optimized C

Gimli 2178 2092 (−4%) 1900 (−13%)

Gimli-Hash 23120 20812 (−10%) 18678 (−19%)

Gimli-Cipher 44423 39583 (−10%) 35853 (−19%)

Table 1: Cycle counts on the SiFive board

8 / 100



Sparkle 1/2

� NIST lightweight round 2 candidate

� family of permutations (Sparkle) based on the block cipher

Sparx

� Schwaemm (AEAD) and Esch (hash function)

� Schwaemm works on 384 bits (Sparkle384)

� Esch works on 256 bits (Sparkle256)

9 / 100



Sparkle - optimization 2/2

� loop unrolling

� avoid loading of round constants

� speed-up up to 42%

mode C-Ref. Optimized C

Esch256 58193 33331 (−42%)

Schwaemm256-128 71271 42634 (−40%)

Table 2: Cycle counts for Esch256 and Schwaemm256-128

10 / 100



Saturnin 1/2

� NIST lightweight round 2 candidate

� based on a 256-bit block cipher with a 256-bit key

� Saturnin-Hash (hash function) and Saturnin-Cipher (AEAD)

11 / 100



Saturnin - optimization 2/2

� two bitsliced variants analyzed:

bs32 bitslices inside of block

bs32x bitslices across blocks

� speed-up the loading of constants

� greedy unrolling and inlining

mode C-Ref. bs32 bs32x

Saturnin-Cipher 121651 59368 (−51%) 68792 (−43%)

Saturnin-Hash 49433 28199 (−43%) -

Table 3: Cycle counts for Saturnin-Cipher (128 AD bytes and 128

message bytes) and Saturnin-Hash

12 / 100



Ascon 1/2

� NIST lightweight round 2 candidate

� 320-bit state

� Ascon-Hash based on eXtendable output function Ascon-Xof

� Ascon (AEAD) based on duplex construction

13 / 100



Ascon - optimization 2/2

� reduce the number of required instructions in the S-Box

� improved S-box in a 6-round unrolled permutation

� speed-up up to 15%

14 / 100



Elephant 1/2

� NIST lightweight round 2 candidate

� family of lightweight authenticated encryption schemes

� Delirium = Elephant-Keccak-f[200]

� 200-bit state

15 / 100



Elephant - optimization 2/2

� parallelization through bit interleaving

� combining 4 blocks into 1 block of 4-byte elements

� state 25 32-bit words (5-by-5-by-32) with size of 800 bits

message/data length C-ref bit interleaved

16/16 66541 73989 (+11%)

64/64 143181 74890 (−47%)

128/128 241975 145936 (−53%)

Table 4: Cycle counts on the SiFive board

16 / 100



Xoodyak 1/2

� NIST lightweight round 2 candidate

� scheme suitable for several symmetric-key function

� hashing, encryption, MAC computation and authenticated

encryption

� 384-bit state

� based on the Xoodoo permutation

17 / 100



Xoodyak - optimization 2/2

� lane Complementing: reduce number of NOT instructions

� loop unrolling

mode Ref unrolled & lane comp.

hash 82741 17963 (−79%)

AEAD 103522 23238 (−18%)

Table 5: Cycle counts for Xoodyak on the SiFive board

18 / 100



AES

� based on RISC-V available assembly implementation1

� combined multiple steps of the round function in a lookup

table (T-table)

� ”safe”, since none of our benchmarking platforms have data

cache

� using a bitsliced approach, multiple blocks processed in parallel

� speed-up up to 4% compared to the assembly version

1https://github.com/Ko-/riscvcrypto
19 / 100

https://github.com/Ko-/riscvcrypto


Comparison & Benchmark



Comparison

Algorithm Weatherley2 our results

Gimli 38530 35853 (−7%)

Schwaemm256-128 72286 43877 (−40%)

Saturnin 152803 59368 (−61%)

Ascon 42562 27271 (−36%)

Delirium 765235 145936 (−81%)

Xoodyak 64869 26246 (−60%)

Table 6: Cycle counts for AEAD mode on SiFive (128 bytes of message

and 128 bytes of associated data)

2https://github.com/rweather/lightweight-crypto, commit 52c8281
20 / 100

https://github.com/rweather/lightweight-crypto


Conclusion



Conclusion

� translating assembly implementation back into C leads to

further speed-ups

� approach applicable to existing code bases: AES & Keccak

assembly implementations

� fully unrolled loops may fail on physical devices (instruction

cache)

� applying the bit manipulation extension3 (B) leads to a

reduction of instructions up to 66%

3https://github.com/riscv/riscv-bitmanip, commit a05231d
21 / 100

https://github.com/riscv/riscv-bitmanip


Thank you for your attention!

Paper: https://ia.cr/2020/836

Code: https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV

22 / 100

https://ia.cr/2020/836
https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV

