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Basic idea

� analysis of strategies for optimizing lightweight cryptography

� several (round 2) candidates of NIST’s lightweight

cryptography standardization project

� on a RISC-V architecture

� assembly or Optimized C?
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Preliminaries



RISC-V

� a new open reduced instruction set architecture (ISA)

� research project that started at UC Berkely in 2010

� a serious competitor to ARM?

� frozen 32-bit base ISA (RV32I) and 64-bit (RV64I)

� general implementation strategies are derived and discussed

RV32I

� 32 32-bit registers x0–x31

� Basic three-operand arithmetic, bitwise, basic shift &

load/store instructions

� No: rotate instructions, carry flag, nice bit operation

instruction

� Compensated by extensions: M, A, F, D, B, V, C, ...
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Environment

SiFive HiFive1 Board

� 5-stage single-issue in-order pipelined RV32IMAC E31 CPU

� < 384 MHz, 64 KiB RAM, 16 MiB flash

� 16 KiB instruction cache
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Optimized C

� optimized implementation usually written directly in assembly

� considering the small size of the RISC-V ISA

� ensuring no branch on secret data, code mimics assembly

instructions

� translation of an assembly implementation back into C

� compiler further optimize and take care of register allocation
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Optimized Algorithms



Gimli 1/2

� NIST lightweight round 2 candidate

� lightweight scheme (Gimli-Hash & Gimli-Cipher)

� 384-bit (3 x 4 matrix of 32-bit words) permutation
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Gimli - optimization 2/2

� careful scheduling of instructions

� saving only 4 callee into the stack

� unrolling in C over 8 rounds

� renaming variable to avoid move operations

� speed-up up to 19%

type C-ref Assembly Optimized C

Gimli 2178 2092 (−4%) 1900 (−13%)

Gimli-Hash 23120 20812 (−10%) 18678 (−19%)

Gimli-Cipher 44423 39583 (−10%) 35853 (−19%)

Table 1: Cycle counts on the SiFive board
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Sparkle 1/2

� NIST lightweight round 2 candidate

� family of permutations (Sparkle) based on the block cipher

Sparx

� Schwaemm (AEAD) and Esch (hash function)

� Schwaemm works on 384 bits (Sparkle384)

� Esch works on 256 bits (Sparkle256)
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Sparkle - optimization 2/2

� loop unrolling

� avoid loading of round constants

� speed-up up to 42%

mode C-Ref. Optimized C

Esch256 58193 33331 (−42%)

Schwaemm256-128 71271 42634 (−40%)

Table 2: Cycle counts for Esch256 and Schwaemm256-128
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Saturnin 1/2

� NIST lightweight round 2 candidate

� based on a 256-bit block cipher with a 256-bit key

� Saturnin-Hash (hash function) and Saturnin-Cipher (AEAD)
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Saturnin - optimization 2/2

� two bitsliced variants analyzed:

bs32 bitslices inside of block

bs32x bitslices across blocks

� speed-up the loading of constants

� greedy unrolling and inlining

mode C-Ref. bs32 bs32x

Saturnin-Cipher 121651 59368 (−51%) 68792 (−43%)

Saturnin-Hash 49433 28199 (−43%) -

Table 3: Cycle counts for Saturnin-Cipher (128 AD bytes and 128

message bytes) and Saturnin-Hash
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Ascon 1/2

� NIST lightweight round 2 candidate

� 320-bit state

� Ascon-Hash based on eXtendable output function Ascon-Xof

� Ascon (AEAD) based on duplex construction
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Ascon - optimization 2/2

� reduce the number of required instructions in the S-Box

� improved S-box in a 6-round unrolled permutation

� speed-up up to 15%

14 / 100



Elephant 1/2

� NIST lightweight round 2 candidate

� family of lightweight authenticated encryption schemes

� Delirium = Elephant-Keccak-f[200]

� 200-bit state
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Elephant - optimization 2/2

� parallelization through bit interleaving

� combining 4 blocks into 1 block of 4-byte elements

� state 25 32-bit words (5-by-5-by-32) with size of 800 bits

message/data length C-ref bit interleaved

16/16 66541 73989 (+11%)

64/64 143181 74890 (−47%)

128/128 241975 145936 (−53%)

Table 4: Cycle counts on the SiFive board
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Xoodyak 1/2

� NIST lightweight round 2 candidate

� scheme suitable for several symmetric-key function

� hashing, encryption, MAC computation and authenticated

encryption

� 384-bit state

� based on the Xoodoo permutation
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Xoodyak - optimization 2/2

� lane Complementing: reduce number of NOT instructions

� loop unrolling

mode Ref unrolled & lane comp.

hash 82741 17963 (−79%)

AEAD 103522 23238 (−18%)

Table 5: Cycle counts for Xoodyak on the SiFive board
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AES

� based on RISC-V available assembly implementation1

� combined multiple steps of the round function in a lookup

table (T-table)

� ”safe”, since none of our benchmarking platforms have data

cache

� using a bitsliced approach, multiple blocks processed in parallel

� speed-up up to 4% compared to the assembly version

1https://github.com/Ko-/riscvcrypto
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Comparison & Benchmark



Comparison

Algorithm Weatherley2 our results

Gimli 38530 35853 (−7%)

Schwaemm256-128 72286 43877 (−40%)

Saturnin 152803 59368 (−61%)

Ascon 42562 27271 (−36%)

Delirium 765235 145936 (−81%)

Xoodyak 64869 26246 (−60%)

Table 6: Cycle counts for AEAD mode on SiFive (128 bytes of message

and 128 bytes of associated data)

2https://github.com/rweather/lightweight-crypto, commit 52c8281
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Conclusion



Conclusion

� translating assembly implementation back into C leads to

further speed-ups

� approach applicable to existing code bases: AES & Keccak

assembly implementations

� fully unrolled loops may fail on physical devices (instruction

cache)

� applying the bit manipulation extension3 (B) leads to a

reduction of instructions up to 66%

3https://github.com/riscv/riscv-bitmanip, commit a05231d
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Thank you for your attention!

Paper: https://ia.cr/2020/836

Code: https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV
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